Schistosomicidal, hepatoprotective and antioxidant activities of the methanolic fraction from Clerodendrum umbellatum Poir leaves aqueous extract in Schistosoma mansoni infection in mice
Tóm tắt
The intensive use of Praziquantel for the treatment of schistosomiasis has raised concerns about the possible emergence of drug-resistant schistosomes. As drug treatment is an important feature of schistosome control programs, the search for alternative drugs is therefore a priority. The aim of this study was to assess the schistosomicidal, hepatoprotective and antioxidant activities of the methanolic fraction from Clerodendrum umbellatum Poir leaves aqueous extract. A phytochemical screening of the fraction of C. umbellatum was conducted. The fraction was administered orally and daily to Schistosoma mansoni-infected mice (BALB/c) from the 36th day post-infection for 28 days at 100, 200 and 400 mg/kg. Praziquantel (500 mg/kg) was used as reference drug. Non-infected and infected-untreated mice served as controls. All mice were sacrificed at 65th day post-infection. Body weight, liver/body and spleen/body weights, as well as worm burden, fecal egg count, liver and intestine egg load were determined. In the plasma, levels of total protein, transaminases (ALT, AST), alkaline phosphatase and total bilirubin were monitored to assess the possibility of liver damage. Malondialdehyde (MDA), catalase (CAT) and glutathione (GSH) levels were measured in the liver as biomarkers of the oxidative stress. The phytochemical analysis of the fraction from C. umbellatum aqueous leaves extract revealed the presence of alkaloids, flavonoids, cardiac glycosides, phenols, saponins, tannins and terpenoids. The worm burden, fecal egg count and egg load in the liver and intestine of infected mice treated with the fraction were significantly (p < 0.001) fewer than in infected-untreated mice. Only the highest-fraction dose reduced the worm and egg burdens in a similar way as praziquantel. Hepatosplenomegaly induced by S. mansoni infection was reduced by the treatment. The liver function on infected mice was ameliorate after administration of the fraction by significant reduction of ALT activity (35.43 to 45.25 %) and increase of total protein level (44.79 to 70.03 %). The methanolic fraction of C. umbellatum prevents the elevated MDA level induced by the infection while significant increase in catalase activity (297.09 to 438.98 %) and glutathione level (58.23 to 95.88 %) were observed after treatment. This study disclosed the schistosomicidal, hepatoprotective and antioxidant activities of the methanolic fraction from C. umbellatum leaves aqueous. These fraction’s activities were similar to those of praziquantel. This fraction can be considered as a promising source for schistosomicidal agents.
Tài liệu tham khảo
Steinmann P, Keiser J, Bos R, Tanner M, Utzinger J. Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. Lancet Infect Dis. 2006;6:411–25.
Fenwick A, Savioli L, Engels D, Bergquist RN, Todd MH. Drugs for the control of parasitic diseases: current status and development in schistosomiasis. Trends Parasitol. 2003;19:509–15.
Abdallahi OMS, Hanna S, de Reggi M, Gharib B. Visualization of oxygen radical production in mouse liver in response to infection with Schistosoma mansoni. Liver. 1999;19:495–500.
Gharib B, Abdallahi OMS, Dessein H, de Reggi M. Development of eosinophil peroxidase activity and concomitant alteration of the antioxidant defenses in the liver of mice infected with Schistosoma mansoni. J Hepatol. 1999;30:594–602.
Magnussen P. Treatment and re-treatment strategies for schistosomiasis control in different epidemiological settings: a review of 10 years’ experiences. Acta Trop. 2003;86:243–54.
Botros SS, Bennett JL. Praziquantel resistance. Expert Opin Drug Discov. 2007;2:35–40.
Melman SD, Steinauer ML, Cunningham C, Kubatko LS, Mwangi IN, Wynn NB, et al. Reduced susceptibility to praziquantel among naturally occurring Kenyan isolates of Schistosoma mansoni. PLoS Neglected Trop Dis. 2009;3:504–10.
Keiser J. In vitro and in vivo trematode models for chemotherapeutic studies. Parasitol. 2010;137:589–603.
Katz N. Terapêutica experimental da esquistossomose mansoni. In: Carvalho OS, Coelho PMZ, Lenzi HL, editors. Schistosoma mansoni esquistossomose: uma visão multidisciplinar. 1st ed. Rio de Janeiro: Fiocruz; 2008. p. 823–47.
El-Ansary AK, Ahmed SA, Aly SA. Antischistosomal and liver protective effects of Curcuma longa extract in Schistosoma mansoni infected mice. Ind J Exp Biol. 2007;45:791–801.
El-Shenawy NS, Soliman MFM, Reyad SI. The effect of antioxidant properties of aqueous garlic extract and Nigella sativa as anti-schistosomiasis agents in mice. Rev Inst Med Trop S Paulo. 2008;50:29–36.
Jatsa HB, Ngo Sock ET, Tchuem Tchuente LA, Kamtchouing P. Evaluation of the in vivo activity of different concentrations of Clerodendrum umbellatum Poir against Schistosoma mansoni infection in mice. Afr J Trad Complement Altern Med. 2009;6:216–21.
Riad NHA, Taha HA, Mahmoud YI. Effects of garlic on Schistosoma mansoni harboured in albino mice: I. A parasitological and ultrastructural study. Trop Med. 2009;26:40–50.
Miranda MA, Magalhães LG, Tiossi RFJ, Kuehn CC, Oliveira LGR, Rodrigues V, et al. Evaluation of the schistosomicidal activity of the steroidal alkaloids from Solanum lycocarpum fruits. Parasitol Res. 2012;111:257–62.
Rizk M, Ibrahim N, El-Rigal N. Comparative in vivo antioxidant levels in Schistosoma mansoni infected mice treated with praziquantel or the essential oil of Melaleuca armillaris leaves. Pak J Biol Sci. 2012;15:971–8.
Adjanohoun JE, Aboubakar N, Dramane K, Ebot ME, Ekpere JA, Enow-Orock EG, et al. Contribution to ethnobotanical and floristic studies in Cameroon. Porto-Novo: CSTR/OUA; 1996.
Trease GE, Evans WC. Pharmacognosy. 13th ed. London: Bailliere Tindall; 1989.
Duwall RH, Dewitt WB. An improved perfusion technique for recovering adult schistosomes from laboratory animals. Am J Parasitol. 1967;7:293–7.
Tendler M, Pinto RM, Oliveira LA, Gebara G, Katz N. Schistosoma mansoni vaccination with adult worm antigens. Int J Parasitol. 1986;16:347–52.
Cheever AW. Conditions affecting the accuracy of potassium hydroxide digestion techniques for counting Schistosoma mansoni eggs in tissues. Bull World Health Organ. 1968;39:328–31.
Gornall AG, Bradwill CJ, David MM. Determination of serum proteins by means of the biuret reaction. J Biol Chem. 1949;77:167–82.
Reitman S, Frankel S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol. 1957;28:56–63.
Tietz NM, Rinker AD, Shaw LM. IFCC method for alkaline phosphatase. J Clin Chem Biochem. 1983;21:731–48.
Wilbur KM, Bernhein F, Shapiro OW. Determination of lipid peroxydation. Arch Biochem Bioph. 1949;24:3959–64.
Ellman GL. Tissue sulfhydryl group. Arch Biochem Bioph. 1959;82:70–7.
Sinha KA. Colorimetric assay of catalase. Anal Biochem. 1972;47:389–94.
Assis AMO, Barreto ML, Prado MS, Reis MG, Parraga IM, Blanton RE. Schistosoma mansoni infection and nutritional status in schoolchildren: a randomized, double-blind trial in northeastern Brazil. Am J Clin Nutr. 1998;68:1247–53.
Vennervald BJ, Kenty L, Butterworth AE, Kariuki CH, Kadzo H, Ireri E, et al. Detailed clinical and ultrasound examination of children and adolescents in a Schistosoma mansoni endemic area in Kenya: hepatosplenic disease in the absence of portal fibrosis. Trop Med Int Health. 2004;9:461–70.
Wilson S, Vennervald BJ, Dunne DW. Chronic hepatosplenomegaly in African school children: a common but neglected morbidity associated with schistosomiasis and malaria. PLoS Negl Trop Dis. 2011;5, e1149.
Andrade ZA. Schistosomal hepatopathy. Mem Inst Oswaldo Cruz. 2004;99:51–7.
Paolini V, Bergeaud JP, Grisez C, Prevot F, Dorchies PH, Hoste H. Effects of condensed tannins on goats experimentally infected with Haemonchus contortus. Vet Parasitol. 2003;113:253–61.
Doenhoff MJ, Cioli D, Utzinger J. Praziquantel: mechanisms of action, resistance and new derivatives for schistosomiasis. Curr Opin Infect Dis. 2008;21:659–67.
Rizk MZ, Fayed TA, Badawy HD, El-Rigal NS. Effect of different durations of Schistosoma mansoni infection on the levels of some antioxidants in mice. Trends Med Res. 2006;1:66–74.
Thapa BR, Walia A. Liver function tests and their interpretation. Indian J Pediatr. 2007;74:663–71.
El-Sawi SA, Sleem AA. Flavonoids and hepatoprotective activity of leaves of Senna surattensis (burm.f.) in CCl4 induced hepatotoxicity in rats. Aust J Basic Appl Sci. 2010;4:1326–34.
El-Rigal NS, Metwally NM, Mohamed AM, Mohamed NZ, Rizk MZ. Protection against oxidative damage induced by Schistosoma mansoni using susceptible/resistant nucleoproteins from Biomphalaria alexandrina snails. Asian J Biol Sci. 2011;4:445–56.
Elsammak MY, Al-Sharkaweey RM, Ragab MS, Amin A, Kandil MH. IL-4 and reactive oxygen species are elevated in Egyptian patients affected with schistosomal liver disease. Parasite Immunol. 2008;30:603–9.
de Oliveira BR, Senger RM, Vasques ML, Gasparotto J, Almeida dos Santos JP, Pasquali BAM, et al. Schistosoma mansoni infection causes oxidative stress and alters receptor for advanced glycation endproduct (RAGE) and tau levels in multiple organs in mice. Int J Parasitol. 2013;43:371–9.
Kathirvel A, Sujatha V. Phytochemical analysis and antioxidant activity of Barringtonia acutangula (L.) Gaertn. leaves. Int J Pharm Pharm Sci. 2012;4:277–81.