High-level chromate resistance in Arthrobactersp. strain FB24 requires previously uncharacterized accessory genes

BMC Microbiology - Tập 9 - Trang 1-14 - 2009
Kristene L Henne1, Cindy H Nakatsu2, Dorothea K Thompson1, Allan E Konopka1,3
1Department of Biological Sciences, Purdue University, West Lafayette, USA
2Department of Agronomy, Purdue University, West Lafayette, USA
3Biological Sciences Division, Pacific Northwest National Laboratory, Richland, USA

Tóm tắt

The genome of Arthrobacter sp. strain FB24 contains a chromate resistance determinant (CRD), consisting of a cluster of 8 genes located on a 10.6 kb fragment of a 96 kb plasmid. The CRD includes chrA, which encodes a putative chromate efflux protein, and three genes with amino acid similarities to the amino and carboxy termini of ChrB, a putative regulatory protein. There are also three novel genes that have not been previously associated with chromate resistance in other bacteria; they encode an oxidoreductase (most similar to malate:quinone oxidoreductase), a functionally unknown protein with a WD40 repeat domain and a lipoprotein. To delineate the contribution of the CRD genes to the FB24 chromate [Cr(VI)] response, we evaluated the growth of mutant strains bearing regions of the CRD and transcript expression levels in response to Cr(VI) challenge. A chromate-sensitive mutant (strain D11) was generated by curing FB24 of its 96-kb plasmid. Elemental analysis indicated that chromate-exposed cells of strain D11 accumulated three times more chromium than strain FB24. Introduction of the CRD into strain D11 conferred chromate resistance comparable to wild-type levels, whereas deletion of specific regions of the CRD led to decreased resistance. Using real-time reverse transcriptase PCR, we show that expression of each gene within the CRD is specifically induced in response to chromate but not by lead, hydrogen peroxide or arsenate. Higher levels of chrA expression were achieved when the chrB orthologs and the WD40 repeat domain genes were present, suggesting their possible regulatory roles. Our findings indicate that chromate resistance in Arthrobacter sp. strain FB24 is due to chromate efflux through the ChrA transport protein. More importantly, new genes have been identified as having significant roles in chromate resistance. Collectively, the functional predictions of these additional genes suggest the involvement of a signal transduction system in the regulation of chromate efflux and warrants further study.

Tài liệu tham khảo

Jones D, Keddie RM: The Genus Arthrobacter. The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, release 3.0 edn. Edited by: Dworkin, et al. 1999, New York: Springer-Verlag, 3 Crocker FH, Fredrickson JK, White DC, Ringelberg DB, Balkwill DL: Phylogenetic and physiological diversity of Arthrobacter strains isolated from unconsolidated subsurface sediments. Microbiology. 2000, 146 (Pt 6): 1295-1310. van Waasbergen LG, Balkwill DL, Crocker FH, Bjornstad BN, Miller RV: Genetic diversity among Arthrobacter species collected across a heterogeneous series of terrestrial deep-subsurface sediments as determined on the basis of 16S rRNA and recA gene sequences. Appl Environ Microbiol. 2000, 66 (8): 3454-3463. 10.1128/AEM.66.8.3454-3463.2000. Benyehuda G, Coombs J, Ward PL, Balkwill D, Barkay T: Metal resistance among aerobic chemoheterotrophic bacteria from the deep terrestrial subsurface. Canadian Journal of Microbiology. 2003, 49 (2): 151-156. 10.1139/w03-012. Margesin R, Schinner F: Heavy metal resistant Arthrobacter sp.--a tool for studying conjugational plasmid transfer between gram-negative and gram-positive bacteria. J Basic Microbiol. 1997, 37 (3): 217-227. 10.1002/jobm.3620370312. Beasley FC: Characterization of Diversity, Chromate Resistance and Aromatic Hydrocarbon Degradation Among Arthrobacter Isolates from Mixed Waste Soil. Masters. 2004, West Lafayette: Purdue University Joynt JL: Bacterial community in a metal and organic contaminated soil. 2000, West Lafayette: Purdue University Nakatsu CH, Carmosini N, Baldwin B, Beasley F, Kourtev P, Konopka A: Soil microbial community responses to additions of organic carbon substrates and heavy metals (Pb and Cr). Appl Environ Microbiol. 2005, 71 (12): 7679-7689. 10.1128/AEM.71.12.7679-7689.2005. Camargo FA, Bento FM, Okeke BC, Frankenberger WT: Chromate reduction by chromium-resistant bacteria isolated from soils contaminated with dichromate. J Environ Qual. 2003, 32 (4): 1228-1233. Megharaj M, Avudainayagam S, Naidu R: Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Curr Microbiol. 2003, 47 (1): 51-54. 10.1007/s00284-002-3889-0. Camargo FA, Bento FM, Okeke BC, Frankenberger WT: Hexavalent chromium reduction by an actinomycete, Arthrobacter crystallopoietes ES 32. Biol Trace Elem Res. 2004, 97 (2): 183-194. 10.1385/BTER:97:2:183. Horton RN, Apel WA, Thompson VS, Sheridan PP: Low temperature reduction of hexavalent chromium by a microbial enrichment consortium and a novel strain of Arthrobacter aurescens. BMC Microbiol. 2006, 6 (1): 5-10.1186/1471-2180-6-5. Cervantes C, Silver S: Plasmid chromate resistance and chromate reduction. Plasmid. 1992, 27 (1): 65-71. 10.1016/0147-619X(92)90007-W. Nies A, Nies DH, Silver S: Nucleotide sequence and expression of a plasmid-encoded chromate resistance determinant from Alcaligenes eutrophus. J Biol Chem. 1990, 265 (10): 5648-5653. Pimentel BE, Moreno-Sanchez R, Cervantes C: Efflux of chromate by Pseudomonas aeruginosa cells expressing the ChrA protein. FEMS Microbiol Lett. 2002, 212 (2): 249-254. 10.1111/j.1574-6968.2002.tb11274.x. Aguilar-Barajas E, Paluscio E, Cervantes C, Rensing C: Expression of chromate resistance genes from Shewanella sp. strain ANA-3 in Escherichia coli. FEMS Microbiol Lett. 2008, 285 (1): 97-100. 10.1111/j.1574-6968.2008.01220.x. Branco R, Chung AP, Johnston T, Gurel V, Morais P, Zhitkovich A: The chromate-inducible chrBACF operon from the transposable element TnOtChr confers resistance to chromium(VI) and superoxide. J Bacteriol. 2008, 190 (21): 6996-7003. 10.1128/JB.00289-08. Ohtake H, Cervantes C, Silver S: Decreased chromate uptake in Pseudomonas fluorescens carrying a chromate resistance plasmid. J Bacteriol. 1987, 169 (8): 3853-3856. Cervantes C, Ohtake H: Plasmid-determined resistance to chromate in Pseudomonas aeruginosa. FEMS Microbiol Lett. 1988, 56: 173-176. 10.1111/j.1574-6968.1988.tb03172.x. Cervantes C, Ohtake H, Chu L, Misra TK, Silver S: Cloning, nucleotide sequence, and expression of the chromate resistance determinant of Pseudomonas aeruginosa plasmid pUM505. J Bacteriol. 1990, 172 (1): 287-291. Juhnke S, Peitzsch N, Hubener N, Grosse C, Nies DH: New genes involved in chromate resistance in Ralstonia metallidurans strain CH34. Arch Microbiol. 2002, 179 (1): 15-25. 10.1007/s00203-002-0492-5. Diaz-Perez C, Cervantes C, Campos-Garcia J, Julian-Sanchez A, Riveros-Rosas H: Phylogenetic analysis of the chromate ion transporter (CHR) superfamily. Febs J. 2007, 274 (23): 6215-6227. 10.1111/j.1742-4658.2007.06141.x. Ramirez-Diaz MI, Diaz-Perez C, Vargas E, Riveros-Rosas H, Campos-Garcia J, Cervantes C: Mechanisms of bacterial resistance to chromium compounds. Biometals. 2007, 21 (3): 321-332. 10.1007/s10534-007-9121-8. Nies DH, Koch S, Wachi S, Peitzsch N, Saier MH: CHR, a novel family of prokaryotic proton motive force-driven transporters probably containing chromate/sulfate antiporters. J Bacteriol. 1998, 180 (21): 5799-5802. Jimenez-Mejia R, Campos-Garcia J, Cervantes C: Membrane topology of the chromate transporter ChrA of Pseudomonas aeruginosa. FEMS Microbiol Lett. 2006, 262 (2): 178-184. Aguilera S, Aguilar ME, Chavez MP, Lopez-Meza JE, Pedraza-Reyes M, Campos-Garcia J, Cervantes C: Essential residues in the chromate transporter ChrA of Pseudomonas aeruginosa. FEMS Microbiol Lett. 2004, 232 (1): 107-112. 10.1016/S0378-1097(04)00068-0. Diaz-Magana A, Aguilar-Barajas E, Moreno-Sanchez R, Ramirez-Diaz MI, Riveros-Rosas H, Vargas E, Cervantes C: Short-chain CHR (SCHR) Proteins from Bacillus subtilis Confer Chromate Resistance in Escherichia coli. J Bacteriol. 2009, 191 (171): 5441-5445. 10.1128/JB.00625-09. Smith TF, Gaitatzes C, Saxena K, Neer EJ: The WD repeat: a common architecture for diverse functions. Trends Biochem Sci. 1999, 24 (5): 181-185. 10.1016/S0968-0004(99)01384-5. Zhang CC, Gonzalez L, Phalip V: Survey, analysis and genetic organization of genes encoding eukaryotic-like signaling proteins on a cyanobacterial genome. Nucleic Acids Res. 1998, 26 (16): 3619-3625. 10.1093/nar/26.16.3619. Sutcliffe IC, Harrington DJ: Lipoproteins of Mycobacterium tuberculosis: an abundant and functionally diverse class of cell envelope components. FEMS Microbiol Rev. 2004, 28 (5): 645-659. 10.1016/j.femsre.2004.06.002. Borremans B, Hobman JL, Provoost A, Brown NL, Lelie van Der D: Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34. J Bacteriol. 2001, 183 (19): 5651-5658. 10.1128/JB.183.19.5651-5658.2001. Yamamoto K, Ishihama A: Transcriptional response of Escherichia coli to external copper. Mol Microbiol. 2005, 56 (1): 215-227. 10.1111/j.1365-2958.2005.04532.x. Kashyap DR, Botero LM, Lehr C, Hassett DJ, McDermott TR: A Na+:H+ antiporter and a molybdate transporter are essential for arsenite oxidation in Agrobacterium tumefaciens. J Bacteriol. 2006, 188 (4): 1577-1584. 10.1128/JB.188.4.1577-1584.2006. Ackerley DF, Gonzalez CF, Park CH, Blake R, Keyhan M, Matin A: Chromate-reducing properties of soluble flavoproteins from Pseudomonas putida and Escherichia coli. Appl Environ Microbiol. 2004, 70 (2): 873-882. 10.1128/AEM.70.2.873-882.2004. Jerke K, Nakatsu CH, Beasley F, Konopka A: Comparative analysis of eight Arthrobacter plasmids. Plasmid. 2008, 59 (2): 73-85. 10.1016/j.plasmid.2007.12.003. Nies A, Nies DH, Silver S: Cloning and expression of plasmid genes encoding resistances to chromate and cobalt in Alcaligenes eutrophus. J Bacteriol. 1989, 171 (9): 5065-5070. Hawkins T, Luban S, Kihara D: Enhanced automated function prediction using distantly related sequences and contextual association by PFP. Protein Sci. 2006, 15 (6): 1550-1556. 10.1110/ps.062153506. Joshi B, Janda L, Stoytcheva Z, Tichy P: PkwA, a WD-repeat protein, is expressed in spore-derived mycelium of Thermomonospora curvata and phosphorylation of its WD domain could act as a molecular switch. Microbiology. 2000, 146 (Pt 12): 3259-3267. Ackerley DF, Barak Y, Lynch SV, Curtin J, Matin A: Effect of chromate stress on Escherichia coli K-12. J Bacteriol. 2006, 188 (9): 3371-3381. 10.1128/JB.188.9.3371-3381.2006. Hu P, Brodie EL, Suzuki Y, McAdams HH, Andersen GL: Whole-genome transcriptional analysis of heavy metal stresses in Caulobacter crescentus. J Bacteriol. 2005, 187 (24): 8437-8449. 10.1128/JB.187.24.8437-8449.2005. Silver S, Phung LT: Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol. 1996, 50: 753-789. 10.1146/annurev.micro.50.1.753. Munkelt D, Grass G, Nies DH: The chromosomally encoded cation diffusion facilitator proteins DmeF and FieF from Wautersia metallidurans CH34 are transporters of broad metal specificity. J Bacteriol. 2004, 186 (23): 8036-8043. 10.1128/JB.186.23.8036-8043.2004. Henne KL, Turse JE, Nicora CD, Lipton MS, Tollaksen S, Lindberg C, Babnigg G, Giometti CS, Nakatsu CH, Thompson DK, et al: Global Proteomic Analysis of the Chromate Response in Arthrobacter sp. Strain FB24. J Proteome Res. 2009, 8 (4): 1704-1716. 10.1021/pr800705f. Cervantes C: Bacterial interactions with chromate. Antonie Van Leeuwenhoek. 1991, 59 (4): 229-233. 10.1007/BF00583675. Coleman NV, Mattes TE, Gossett JM, Spain JC: Phylogenetic and kinetic diversity of aerobic vinyl chloride-assimilating bacteria from contaminated sites. Appl Environ Microbiol. 2002, 68 (12): 6162-6171. 10.1128/AEM.68.12.6162-6171.2002. Mattes TE, Coleman NV, Spain JC, Gossett JM: Physiological and molecular genetic analyses of vinyl chloride and ethene biodegradation in Nocardioides sp. strain JS614. Arch Microbiol. 2005, 183 (2): 95-106. 10.1007/s00203-004-0749-2. McLeod MP, Warren RL, Hsiao WW, Araki N, Myhre M, Fernandes C, Miyazawa D, Wong W, Lillquist AL, Wang D, et al: The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci USA. 2006, 103 (42): 15582-15587. 10.1073/pnas.0607048103. Jerke KH: Physiological and Genetic Analysis of Plasmid-Mediated Metal Resistance in Arthrobacter sp strain AK-1. 2006, West Lafayette: Purdue University Biebl H, Pfenning N: Isolation of members of the family Rhodospirillaceae. The Prokaryotes. Edited by: Starr MP, Stolp H, Truber HG, Balows A, Schlegel HG. 1981, Berlin: Springer-Verlag KG Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: a laboratory manual. 1989, Cold Spring Laboratory, Cold Spring Harbor, NY, 2 Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al: Clustal W and Clustal X version 2.0. Bioinformatics. 2007, 23 (21): 2947-2948. 10.1093/bioinformatics/btm404. The Universal Protein Resource (UniProt) 2009. Nucleic Acids Res. 2009, D169-174. 37 Database Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW: GenBank. Nucleic Acids Res. 2009, D26-31. 10.1093/nar/gkn723. 37 Database Krogh A, Larsson B, von Heijne G, Sonnhammer EL: Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001, 305 (3): 567-580. 10.1006/jmbi.2000.4315. Sandu C, Chiribau CB, Sachelaru P, Brandsch R: Plasmids for nicotine-dependent and -independent gene expression in Arthrobacter nicotinovorans and other Arthrobacter species. Appl Environ Microbiol. 2005, 71 (12): 8920-8924. 10.1128/AEM.71.12.8920-8924.2005. Gartemann KH, Eichenlaub R: Isolation and characterization of IS an insertion element of 4-chlorobenzoate-degrading Arthrobacter sp. strain TM1, and development of a system for transposon mutagenesis. J Bacteriol. 1409, 183 (12): 3729-3736. 10.1128/JB.183.12.3729-3736.2001. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with the Folin phenol reagent. J Biol Chem. 1951, 193 (1): 265-275. Branco R, Chung AP, Morais PV: Sequencing and expression of two arsenic resistance operons with different functions in the highly arsenic-resistant strain Ochrobactrum tritici SCII24T. BMC Microbiol. 2008, 8: 95-10.1186/1471-2180-8-95.