Highly sensitive and selective ammonia gas sensors based on PbS quantum dots/TiO2 nanotube arrays at room temperature

Earthquake Spectra - Tập 236 - Trang 529-536 - 2016
Yueli Liu1, Linlin Wang1, Haoran Wang1, Mengyun Xiong1, Tingqiang Yang1, Galina S. Zakharova2
1State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
2Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Science, Ekaterinburg 620990, Russian Federation

Tài liệu tham khảo

Cui, 2001, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species, Science, 293, 1289, 10.1126/science.1062711 Yang, 2016, Emerging and future possible strategies for enhancing 1D inorganic nanomaterials-based electrical sensors towards explosives vapors detection, Adv. Funct. Mater., 26, 2406, 10.1002/adfm.201504846 Homola, 2008, Surface plasmon resonance sensors for detection of chemical and biological species, Chem. Rev., 108, 462, 10.1021/cr068107d Huang, 2003, Polyaniline nanofibers: facile synthesis and chemical sensors, J. Am. Chem. Soc., 125, 314, 10.1021/ja028371y Bai, 2014, Titanium dioxide nanomaterials for sensor applications, Chem. Rev., 114, 10131, 10.1021/cr400625j Liu, 2004, Polymeric nanowire chemical sensor, Nano Lett., 4, 671, 10.1021/nl049826f Mishra, 2015, SnO2 quantum dots decorated on RGO: a superior sensitive, selective and reproducible performance for a H2 and LPG sensor, Nanoscale, 7, 11971, 10.1039/C5NR02837J Gao, 2012, One-pot hydrothermal synthesis of ZnO/ZnS heterostructured nanorod arrays with high ethanol sensing properties, Chem. Eur. J., 18, 4681, 10.1002/chem.201102927 Chen, 2015, NiO-wrapped mesoporous TiO2 microspheres based selective ammonia sensor at room temperature, Sens. Actuators B, 209, 729, 10.1016/j.snb.2014.12.031 Modafferi, 2012, Highly sensitive ammonia resistive sensor based on electrospun V2O5 fibers, Sens. Actuators B, 163, 61, 10.1016/j.snb.2012.01.007 Xu, 2015, Interface bonds determined gas-sensing of SnO2-SnS2 hybrids to ammonia at room temperature, ACS Appl. Mater. Interfaces, 7, 11359, 10.1021/acsami.5b01856 Wang, 2015, High-performance, room-temperature, and no-humidity-impact ammonia sensor based on heterogeneous nickel oxide and zinc oxide nanocrystals, ACS Appl. Mater. Interfaces, 7, 3816, 10.1021/am508807a Prasad, 2003, Comparison of sol-gel and ion beam deposited MoO3 thin film gas sensors for selective ammonia detection, Sens. Actuators B, 93, 25, 10.1016/S0925-4005(03)00336-8 Wang, 2006, Fabrication and characterization of polycrystalline WO3 nanofibers and their application for ammonia sensing, J. Phys. Chem. B, 110, 23777, 10.1021/jp0635819 Park, 2010, Titania-based miniature potentiometric carbon monoxide gas sensors with high sensitivity, J. Am. Ceram. Soc., 93, 742, 10.1111/j.1551-2916.2009.03446.x Teleki, 2006, Sensing of organic vapors by flame-made TiO2 nanoparticles, Sens. Actuators B, 119, 683, 10.1016/j.snb.2006.01.027 Rella, 2007, Acetone and ethanol solid-state gas sensors based on TiO2 nanoparticles thin film deposited by matrix assisted pulsed laser evaporation, Sens. Actuators B, 127, 426, 10.1016/j.snb.2007.04.048 Ding, 2011, Preparation of TiO2-Pt hybrid nanofibers and their application for sensitive hydrazine detection, Nanoscale, 3, 1149, 10.1039/c0nr00773k Seo, 2011, Microstructure control of TiO2 nanotubular films for improved VOC sensing, Sens. Actuators B, 154, 251, 10.1016/j.snb.2010.01.069 Liu, 2013, Room temperature impedance spectroscopy-based sensing of formaldehyde with porous TiO2 under UV illumination, Sens. Actuators B, 185, 1, 10.1016/j.snb.2013.04.090 Dhivya, 2014, Nanostructured TiO2 films: enhanced NH3 detection at room temperature, Ceram. Int., 40, 409, 10.1016/j.ceramint.2013.06.016 Garadkar, 2001, Low cost nanostructured anatase TiO2 as a H2S gas sensor synthesized by microwave assisted technique, Sens. Lett., 9, 526, 10.1166/sl.2011.1507 Park, 2010, Structure and CO gas sensing properties of electrospun TiO2 nanofibers, Mater. Lett., 64, 255, 10.1016/j.matlet.2009.10.052 Lü, 2013, Alumina decorated TiO2 nanotubes with ordered mesoporous walls as high sensitivity NOx gas sensors at room temperature, Nanoscale, 5, 8569, 10.1039/c3nr01903a Moon, 2010, Highly sensitive CO sensors based on cross-linked TiO2 hollow hemispheres, Sens. Actuators B, 149, 116, 10.1016/j.snb.2010.06.014 Wu, 2012, Hierarchical structured TiO2 nanotubes for formaldehyde sensing, Ceram. Int., 38, 6341, 10.1016/j.ceramint.2012.05.004 Li, 2009, Study of the resistance behavior of anatase and rutile thick films towards carbon monoxide and oxygen at high temperatures and possibilities for sensing applications, Sens. Actuators B, 143, 308, 10.1016/j.snb.2009.09.021 Zeng, 2010, Formaldehyde gas sensing property and mechanism of TiO2-Ag nanocomposite, Phys. B, 405, 4235, 10.1016/j.physb.2010.07.017 Gong, 2010, Ultrasensitive NH3 gas sensor from polyaniline nanograin enchased TiO2 fibers, J. Phys. Chem. C, 114, 9970, 10.1021/jp100685r Wang, 2012, Ammonia sensing behaviors of TiO2-PANI/PA6 composite nanofibers, Sensors, 12, 17046, 10.3390/s121217046 Waghmare, 2013, Enhanced gas sensitivity in TiO2 nanoneedles grown on upright SnO2 nanoplates, Scripta Mater., 68, 735, 10.1016/j.scriptamat.2013.01.007 Jung, 2011, Characteristics of the TiO2/SnO2 thick film semiconductor gas sensor to determine fish freshness, J. Ind. Eng. Chem., 17, 237, 10.1016/j.jiec.2011.02.012 Wang, 2009, Ammonia gas sensor using polypyrrole-coated TiO2/ZnO nanofibers, Electroanalysis, 21, 1432, 10.1002/elan.200904584 Tang, 2011, Colloidal-quantum-dot photovoltaics using atomic-ligand passivation, Nat. Mater., 10, 765, 10.1038/nmat3118 Chen, 2016, A green synthesis route for the phase and size tunability of copper antimony sulfide nanocrystals with high yield, Nanoscale, 8, 5146, 10.1039/C5NR09097K Konstantatos, 2012, Hybrid graphene-quantum dot phototransistors with ultrahigh gain, Nat. Nanotechnol., 7, 363, 10.1038/nnano.2012.60 Bakueva, 2003, Size-tunable infrared (1000–1600nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer, Appl. Phys. Lett., 82, 2895, 10.1063/1.1570940 Liu, 2014, Physically flexible, rapid-response gas sensor based on colloidal quantum dot solids, Adv. Mater., 26, 2718, 10.1002/adma.201304366 Liu, 2014, Enhanced light-harvesting of the conical TiO2 nanotube arrays used as the photoanodes in flexible dye-sensitized solar cells, Electrochim. Acta, 146, 838, 10.1016/j.electacta.2014.09.092 Liu, 2014, Fabrication of TiO2 nanotube arrays and their application in flexible dye-sensitized solar cells, RSC Adv., 4, 45592, 10.1039/C4RA07162J Lee, 2009, PbS and CdS quantum dot-sensitized solid-state solar cells: ‘Old Concepts new Results’, Adv. Funct. Mater., 19, 2735, 10.1002/adfm.200900081 Ling, 2013, DFT study on the sulfurization mechanism during the desulfurization of H2S on the ZnO desulfurizer, Fuel Process. Technol., 106, 222, 10.1016/j.fuproc.2012.08.001 Santen, 2010, Reactivity theory of transition-metal surfaces: a Brønsted-Evans-Polanyi linear activation energy-free-energy analysis, Chem. Rev., 110, 2005, 10.1021/cr9001808 Jin, 2010, Synthesis and gas sensing properties of Fe2O3 nanoparticles activated V2O5 nanotubes, Sens. Actuators B, 145, 211, 10.1016/j.snb.2009.11.059 Wang, 2015, Enhanced gas sensing properties of V2O5 nanowires decorated with SnO2 nanoparticles to ethanol at room temperature, RSC Adv., 5, 41050, 10.1039/C5RA00530B