Large magnetoelectric coupling in multiferroic oxide heterostructures assembled via epitaxial lift-off

Nature Communications - Tập 11 Số 1
David Pesquera1, Ekaterina Khestanova2, M. Ghidini1, Sen Zhang1, Aidan P. Rooney3, Francesco Maccherozzi4, Patricia Riego1, S. Farokhipoor5, J. Kim1, Xavier Moya1, M. E. Vickers1, N. A. Stelmashenko1, Sarah J. Haigh3, S. S. Dhesi4, N. D. Mathur1
1Department of Materials Science, University of Cambridge, Cambridge CB3 0FS, UK
2ITMO University, Saint Petersburg 197101, Russia
3School of Materials, University of Manchester, Manchester M13 9PL, UK
4Diamond Light Source, Chilton, Didcot, Oxfordshire OX11 0DE, UK
5Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands

Tóm tắt

AbstractEpitaxial films may be released from growth substrates and transferred to structurally and chemically incompatible substrates, but epitaxial films of transition metal perovskite oxides have not been transferred to electroactive substrates for voltage control of their myriad functional properties. Here we demonstrate good strain transmission at the incoherent interface between a strain-released film of epitaxially grown ferromagnetic La0.7Sr0.3MnO3 and an electroactive substrate of ferroelectric 0.68Pb(Mg1/3Nb2/3)O3-0.32PbTiO3 in a different crystallographic orientation. Our strain-mediated magnetoelectric coupling compares well with respect to epitaxial heterostructures, where the epitaxy responsible for strong coupling can degrade film magnetization via strain and dislocations. Moreover, the electrical switching of magnetic anisotropy is repeatable and non-volatile. High-resolution magnetic vector maps reveal that micromagnetic behaviour is governed by electrically controlled strain and cracks in the film. Our demonstration should inspire others to control the physical/chemical properties in strain-released epitaxial oxide films by using electroactive substrates to impart strain via non-epitaxial interfaces.

Từ khóa


Tài liệu tham khảo

Tokura, Y. Orbital physics in transition-metal oxides. Science 288, 462–468 (2000).

Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. Nat. Mater. 11, 103–113 (2012).

Weber, M. C. et al. Multiple strain-induced phase transitions in LaNiO3 thin films. Phys. Rev. B 94, 014118 (2016).

Mayeshiba, T. & Morgan, D. Strain effects on oxygen vacancy formation energy in perovskites. Solid State Ionics 311, 105–117 (2017).

Aetukuri, N. B. et al. Control of the metal-insulator transition in vanadium dioxide by modifying orbital occupancy. Nat. Phys. 9, 661–666 (2013).

Pan, X. Q. et al. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306, 1005–1009 (2004).

Konishi, Y. et al. Orbital-state-mediated phase-control of manganites. J. Phys. Soc. Japan 68, 3790–3793 (1999).

Hwang, J. et al. Tuning perovskite oxides by strain: electronic structure, properties, and functions in (electro)catalysis and ferroelectricity. Mater. Today 31, 100–118 (2019).

Petrie, J. R. et al. Enhanced bifunctional oxygen catalysis in strained LaNiO3 perovskites. J. Am. Chem. Soc. 138, 2488–2491 (2016).

Park, S.-E. & Shrout, T. R. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82, 1804–1811 (1997).

Wang, Z., Wang, Y., Luo, H., Li, J. & Viehland, D. Crafting the strain state in epitaxial thin films: a case study of CoFe2O4 films on Pb(Mg,Nb)O3−PbTiO3. Phys. Rev. B 90, 134103 (2014).

Wang, Z., Wang, Y., Ge, W., Li, J. & Viehland, D. Volatile and nonvolatile magnetic easy-axis rotation in epitaxial ferromagnetic thin films on ferroelectric single crystal substrates. Appl. Phys. Lett. 103, 132909 (2013).

Gilbert, I. et al. Magnetic microscopy and simulation of strain-mediated control of magnetization in PMN-PT/Ni nanostructures. Appl. Phys. Lett. 109, 162404 (2016).

Matsukura, F., Tokura, Y. & Ohno, H. Control of magnetism by electric fields. Nat. Nanotechnol. 10, 209–220 (2015).

Fusil, S., Garcia, V., Barthélémy, A. & Bibes, M. Magnetoelectric devices for spintronics. Annu. Rev. Mater. Res. 44, 91–116 (2014).

Hu, J. M., Li, Z., Chen, L. Q. & Nan, C. W. High-density magnetoresistive random access memory operating at ultralow voltage at room temperature. Nat. Commun. 2, 553–558 (2011).

Eerenstein, W., Wiora, M., Prieto, J. L., Scott, J. F. & Mathur, N. D. Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures. Nat. Mater. 6, 348–351 (2007).

Thiele, C., Dörr, K., Bilani, O., Rödel, J. & Schultz, L. Influence of strain on the magnetization and magnetoelectric effect in La0.7A0.3MnO3/PMN-PT(001) (A=Sr,Ca). Phys. Rev. B 75, 054408 (2007).

Moya, X. et al. Giant and reversible extrinsic magnetocaloric effects in La0.7Ca0.3MnO3 films due to strain. Nat. Mater. 12, 52–58 (2013).

Dale, D., Fleet, A., Brock, J. D. & Suzuki, Y. Dynamically tuning properties of epitaxial colossal magnetoresistance thin films. Appl. Phys. Lett. 82, 3725 (2003).

Heo, S. et al. Modulation of metal-insulator transitions by field-controlled strain in NdNiO3/SrTiO3/PMN-PT (001) heterostructures. Sci. Rep. 6, 22228 (2016).

Zhang, W. et al. Piezostrain-enhanced photovoltaic effects in BiFeO3/La0.7Sr0.3MnO3/PMN-PT heterostructures. Nano Energy 18, 315–324 (2015).

Xu, H. et al. Strain-mediated converse magnetoelectric coupling in La0.7Sr0.3MnO3/Pb(Mg1/3Nb2/3)O3–PbTiO3 multiferroic heterostructures. Cryst. Growth Des. 18, 5934–5939 (2018).

Kim, J. Y., Yao, L. & Van Dijken, S. Coherent piezoelectric strain transfer to thick epitaxial ferromagnetic films with large lattice mismatch. J. Phys. Condens. Matter 25, 082205 (2013).

Park, J. H. et al. In-plane strain control of the magnetic remanence and cation-charge redistribution in CoFe2O4 thin film grown on a piezoelectric substrate. Phys. Rev. B 81, 134401 (2010).

Zhou, W. P. et al. Electric field manipulation of magnetic and transport properties in SrRuO3/Pb(Mg1/3Nb2/3)O3-PbTiO3 heterostructure. Sci. Rep. 4, 6991 (2014).

Bilani-Zeneli, O. et al. SrTiO3 on piezoelectric PMN-PT(001) for application of variable strain. J. Appl. Phys. 104, 054108 (2008).

Demeester, P., Pollentier, I., Dobbelaere, P. D. E., Brys, C. & Daele, P. V. A. N. Epitaxial lift-off and its applications. Semicond. Sci. Technol. 8, 1124–1135 (1993).

Konagai, M., Sugimoto, M. & Takahashi, K. High efficiency GaAs thin film solar cells by peeled film technology. J. Cryst. Growth 45, 277–280 (1978).

Liu, Y., Huang, Y. & Duan, X. Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019).

Cheng, C. W. et al. Epitaxial lift-off process for gallium arsenide substrate reuse and flexible electronics. Nat. Commun. 4, 1577 (2013).

Kim, Y. et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature 544, 340–343 (2017).

Gan, Q. et al. Direct measurement of strain effects on magnetic and electrical properties of epitaxial SrRuO3 thin films. Appl. Phys. Lett. 72, 978–980 (1998).

Paskiewicz, D. M., Sichel-Tissot, R., Karapetrova, E., Stan, L. & Fong, D. D. Single-crystalline SrRuO3 nanomembranes: a platform for flexible oxide electronics. Nano Lett. 16, 534–542 (2016).

Bakaul, S. R. et al. Single crystal functional oxides on silicon. Nat. Commun. 7, 10547 (2016).

Lu, D. et al. Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers. Nat. Mater. 15, 1255–1260 (2016).

Chen, Z. et al. Freestanding crystalline YBa2Cu3O7 heterostructure membranes. Phys. Rev. Mater. 3, 060801 (2019).

Bakaul, S. R. et al. High speed epitaxial perovskite memory on flexible substrates. Adv. Mater. 29, 1605699 (2017).

Shen, L. et al. Epitaxial lift-off of centimeter-scaled spinel ferrite oxide thin films for flexible electronics. Adv. Mater. 29, 1702411 (2017).

Luo, Z.-D., Peters, J. J. P., Sanchez, A. M. & Alexe, M. Flexible memristors based on single-crystalline ferroelectric tunnel junctions. ACS Appl. Mater. Interfaces 11, 23313–23319 (2019).

Wang, H. et al. Integration of both invariable and tunable microwave magnetisms in a single flexible La0.67Sr0.33MnO3 thin film. ACS Appl. Mater. Interfaces 11, 22677–22683 (2019).

Hong, S. S. et al. Extreme tensile strain states in La0.7Ca0.3MnO3 membranes. Science 368, 71–76 (2020).

Hui, Y. Y. et al. Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet. ACS Nano 7, 7126–7131 (2013).

Weber, D., Vofély, R., Chen, Y., Mourzina, Y. & Poppe, U. Variable resistor made by repeated steps of epitaxial deposition and lithographic structuring of oxide layers by using wet chemical etchants. Thin Solid Films 533, 43–47 (2013).

Steenbeck, K. & Hiergeist, R. Magnetic anisotropy of ferromagnetic La0.7(Sr,Ca)0.3MnO3 epitaxial film. Appl. Phys. Lett. 75, 1778–1780 (1999).

Wu, T. et al. Domain engineered switchable strain states in ferroelectric (011) [Pb(Mg1/3Nb2/3)O3](1-x)-[PbTiO3]x (PMN-PT, x≈0.32) single crystals. J. Appl. Phys. 109, 124101 (2011).

Wang, J. I. J. et al. Electronic transport of encapsulated graphene and WSe2 devices fabricated by pick-up of prepatterned hBN. Nano Lett. 15, 1898–1903 (2015).

Millis, A. J., Darling, T. & Migliori, A. Quantifying strain dependence in ‘colossal’ magnetoresistance manganites. J. Appl. Phys. 83, 1588–1591 (1998).

Fang, Z., Solovyev, I. & Terakura, K. Phase diagram of tetragonal manganites. Phys. Rev. Lett. 84, 3169–3172 (2000).

Lecoeur, P. et al. Magnetic domain structures of La0.67Sr0.33MnO3 thin films with different morphologies. J. Appl. Phys. 82, 3934–3939 (1997).

Berndt, L. M., Balbarin, V. & Suzuki, Y. Magnetic anisotropy and strain states of (001) and (110) colossal magnetoresistance thin films. Appl. Phys. Lett. 77, 2903–2905 (2000).

Suzuki, Y. et al. Magnetic anisotropy of doped manganite thin films and crystals. J. Appl. Phys. 83, 7064–7066 (1998).

Cao, H. et al. Intermediate ferroelectric orthorhombic and monoclinic M B phases in [110] electric-field-cooled Pb(Mg1/3Nb2/3)O3-30%PbTiO3 crystals. Phys. Rev. B 72, 064104 (2005).

Ghidini, M. et al. Shear-strain-mediated magnetoelectric effects revealed by imaging. Nat. Mater. 18, 840–845 (2019).

Iwasaki, Y. Stress-driven magnetization reversal in magnetostrictive films with in-plane magnetocrystalline anisotropy. J. Magn. Magn. Mater. 240, 395–397 (2002).

Peng, R.-C. et al. Fast 180° magnetization switching in a strain-mediated multiferroic heterostructure driven by a voltage. Sci. Rep. 6, 27561 (2016).

Peng, R. C., Wang, J. J., Hu, J. M., Chen, L. Q. & Nan, C. W. Electric-field-driven magnetization reversal in square-shaped nanomagnet-based multiferroic heterostructure. Appl. Phys. Lett. 106, 142901 (2015).

Dekker, M. C. et al. Magnetoelastic response of La0.7Sr0.3MnO3/SrTiO3 superlattices to reversible strain. Phys. Rev. B 84, 054463 (2011).

Nagarajan, V. et al. Dynamics of ferroelastic domains in ferroelectric thin films. Nat. Mater. 2, 43–47 (2003).

Radaelli, P. G. et al. Structural effects on the magnetic and transport properties of perovskite $${A_{1-x}}{A^{\prime}_{x}}{\mathrm{MnO}_{3}}(x=0.25, 0.30)$$. Phys. Rev. B 56, 8265–8276 (1997).