Regulation of antidepressant activity by cAMP response element binding proteins

Molecular Neurobiology - Tập 30 - Trang 143-155 - 2004
Alana C. Conti1, Julie A. Blendy1
1Departments of Pharmacology and Center for Neurobiology and Behavior, University of Pennsylvania, Philadelphia

Tóm tắt

Depression is a clinically and biologically heterogeneous disease that is one of the most prevalent and costly psychiatric disorders. It is theleading cause of disability regarding job performance and burden on family members in the United States and worldwide. (1). Although the therapeutic efficacy of antidepressant drugs has been recognized for years, the exact molecular mechanisms of action remain elusive, making the systematic approach to the development of new drugs difficult. The acute increases in levels of monoamines brought about by various classes of antidepressants cannot account for the requirement of repeated, chronic administration for up to 2–6 wk before treatment benefits become evident. Furthermore, despite their efficacy, current antidepressant drugs improve symptoms in only 60% of patients treated (2). The development of new and better therapies depends on a thorough understanding of the neurobiology of depression and the molecular mechanisms underlying antidepressant drug action. Early studies focusing on alterations in the levels of receptors and second messengers helped define the important signaling pathways initiated by these drugs, whereas recent molecular studies suggested that long-term adaptations in cellular signaling mechanisms may be required for the onset and/or maintenance of antidepressant effects. Attention has now focused on downstream targets of Ca++ and cyclic adenosine monophosphate (cAMP) in the cell, such as the activation of transcription factors. This article discusses the transcription factor cAMP response element binding protein and a related protein, cyclic AMP response element modulator, and their role as molecular mediators of antidepressant action.

Tài liệu tham khảo

Crown W. H., Finkelstein S., Berndt E. R., et al. (2002). The impact of treatment-resistant depression on health care utilization and costs. J. Clin. Psychiatry 63, 963–971. Nelson J. C. (1999). A review of the efficacy of serotonergic and noradrenergic reuptake inhibitors for treatment of major depression. Biol. Psychiatry 46, 1301–1308. Hoeffler J. P., Meyer T. E., Yun Y., Jameson J. L., Habener J. F. (1988). Cyclic AMP-responsive DNA-binding protein: structure based on a cloned placental cDNA. Science 242, 1430–1433. Landschulz W. H., Johnson P. F., McKnight S. L. (1988). The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240, 1759–1764. Mayr B., Montminy M. (2001). Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat. Rev. Mol. Cell Biol. 2, 599–609. Shaywitz A. J., Greenberg M. E. (1999). CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu. Rev. Biochem. 68, 821–861. Maekawa T., Sakura H., Kanei-Ishii C., et al. (1989). Leucine zipper structure of the protein CRE-BP1 binding to the cyclic AMP response element in brain. EMBO J. 8, 2023–2028. Hai T. W., Liu F., Coukos W. J., Green M. R. (1989). Transcription factor ATF cDNA clones: an extensive family of leucine zipper proteins able to selectively form DNA-binding heterodimers. Genes Dev. 3, 2083–2090. Hai T., Curran T. (1991). Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. Proc. Natl. Acad. Sci. USA 88, 3720–3724. Williams J. S., Dixon J. E., Andrisani O. M. (1993). Binding constant determination studies utilizing recombinant delta CREB protein. DNA Cell Biol. 12, 183–190. Gonzalez G. A., Yamamoto K. K., Fischer W. H., et al. (1989). A cluster of phosphorylation sites on the cyclic AMP-regulated nuclear factor CREB predicted by its sequence. Nature 337, 749–752. Yamamoto K. K., Gonzalez G. A., Biggs W. H. R., Montminy M. R. (1988). Phosphorylation-induced binding and transcriptional efficacy of nuclear factor CREB. Nature 334, 494–498. Gonzalez G. A., Montminy M. R. (1989). Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 59, 675–680. Heninger G. R., Charney D. S. (1987). Psychopharmacology: The Third Generation of Progress. New York: Raven Press, pp. 535–544. Sheng M., Thompson M. A., Greenberg M. E. (1991). CREB: a Ca(2+)-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science 252, 1427–1430. de Groot R. P., Delmas V., Sassone-Corsi P. (1994). DNA bending by transcription factors CREM and CREB. Oncogene 9, 463–468. Xing J., Ginty D. D., Greenberg M. E. (1996). Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science 273, 959–963. Nichols M., Weih F., Schmid W., et al. (1992). Phosphorylation of CREB affects its binding to high and low affinity sites: implications for cAMP induced gene transcription. Embo J. 11, 3337–3346. Krebs E. G., Beavo J. A. (1979). Phosphorylation-dephosphorylation of enzymes. Annu. Rev. Biochem. 48, 923–959. Sun P., Enslen H., Myung P. S., Maurer R. A. (1994). Differential activation of CREB by Ca2+/calmodulin-dependent protein kinases type II and type IV involves phosphorylation of a site that negatively regulates activity. Genes Dev. 8, 2527–2539. Sun P., Maurer R. A. (1995). An inactivating point mutation demonstrates that interaction of cAMP response element binding protein (CREB) with the CREB binding protein is not sufficient for transcriptional activation. J. Biol. Chem. 270, 7041–7044. Dash P. K., Karl K. A., Colicos M. A., Prywes R., Kandel E. R. (1991). cAMP response element-binding protein is activated by Ca2+/calmodulin- as well as cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA 88, 5061–5065. Ginty D. D., Glowacka D., DeFranco C., Wagner J. A. (1991). Nerve growth factor-induced neuronal differentiation after dominant repression of both type I and type II cAMP-dependent protein kinase activities. J. Biol. Chem. 266, 15,325–15,333. De Cesare D., Jacquot S., Hanauer A., Sassone-Corsi P. (1998). Rsk-2 activity is necessary for epidermal growth factor-induced phosphorylation of CREB protein and transcription of c-fos gene. Proc. Natl. Acad. Sci. USA 95, 12,202–12,207. Conkright M. D., Guzman E., Flechner L., Su A. I., Hogenesch J. B., Montminy M. (2003). Genome-wide analysis of CREB target genes reveals a core promoter requirement for cAMP responsiveness. Mol. Cell 11, 1101–1108. Yamamoto K. K., Gonzalez G. A., Menzel P., Rivier J., Montminy M. R. (1990). Characterization of a bipartite activator domain in transcription factor CREB. Cell 60, 611–617. Hoeffler J. P., Meyer T. E., Waeber G., Habener J. F. (1990). Multiple adenosine 3′,5′-cyclic [corrected] monophosphate response element DNA-binding proteins generated by gene diversification and alternative exon splicing. Mol. Endocrinol. 4, 920–930. Waeber G., Meyer T. E., LeSieur M., Hermann H. L., Gerard N., Habener J. F. (1991). Developmental stage-specific expression of cyclic adenosine 3′,5′-monophosphate response element-binding protein CREB during spermatogenesis involves alternative exon splicing. Mol. Endocrinol. 5, 1418–1430. Cole T. J., Copeland N. G., Gilbert D. J., Jenkins N. A., Schutz G., Ruppert S. (1992). The mouse CREB (cAMP responsive element binding protein) gene: structure, promoter analysis, and chromosomal localization. Genomics 13, 974–982. Berkowitz L. A., Gilman M. Z. (1990). Two distinct forms of active transcription factor CREB (cAMP response element binding protein). Proc. Natl. Acad. Sci. USA 87, 5258–5262. Ruppert S., Cole T. J., Boshart M., Schmid E., Schutz G. (1992). Multiple mRNA isoforms of the transcription activator protein CREB: generation by alternative splicing and specific expression in primary spermatocytes. EMBO J. 11, 1503–1512. Blendy J. A., Kaestner K. H., Schmid W., Gass P., Schutz G. (1996). Targeting of the CREB gene leads to up-regulation of a novel CREB mRNA isoform. EMBO J. 15, 1098–1106. Rudolph D., Tafuri A., Gass P., Hammerling G. J., Arnold B., Schutz G. (1998). Impaired fetal T cell development and perinatal lethality in mice lacking the cAMP response element binding protein. Proc. Natl. Acad. Sci. USA 95, 4481–4486. Foulkes N. S., Mellstrom B., Benusiglio E., Sassone-Corsi P. (1992). Developmental switch of CREM function during spermatogenesis: from antagonist to activator. Nature 355, 80–84. Blendy J. A., Kaestner K. H., Weinbauer G. F., Nieschlag E., Schutz G. (1996). Severe impairment of spermatogenesis in mice lacking the CREM gene. Nature 380, 162–165. Nantel F., Monaco L., Foulkes N. S., et al. (1996). Spermiogenesis deficiency and germ-cell apoptosis in CREM-mutant mice. Nature 380, 159–162. Molina C. A., Foulkes N. S., Lalli E., Sassone-Corsi P. (1993). Inducibility and negative autoregulation of CREM: an alternative promoter directs the expression of ICER, an early response repressor. Cell 75, 875–886. Stehle J. H., Foulkes N. S., Molina C. A., Simonneaux V., Pevet P., Sassone-Corsi P. (1993). Adrenergic signals direct rhythmic expression of transcriptional repressor CREM in the pineal gland. Nature 365, 314–320. Duman R. S., Heninger G. R., Nestler E. J. (1997). A molecular and cellular theory of depression. Arch. Gen. Psychiatry 54, 597–606. Perez J., Tardito D., Mori S., Racagni G., Smeraldi E., Zanardi R. (2000). Abnormalities of cAMP signaling in affective disorders: implication for pathophysiology and treatment. Bipolar. Disord. 2, 27–36. Ozawa H., Rasenick M. M. (1991). Chronic electroconvulsive treatment augments coupling of the GTP-binding protein Gs to the catalytic moiety of adenylyl cyclase in a manner similar to that seen with chronic antidepressant drugs. J. Neurochem. 56, 330–338. Menkes D. B., Rasenick M. M., Wheeler M. A., Bitensky M. W. (1983). Guanosine triphosphate activation of brain adenylate cyclase: enhancement by long-term antidepressant treatment. Science 219, 65–67. Nestler E. J., Terwilliger R. Z., Duman R. S. (1989). Chronic antidepressant administration alters the subcellular distribution of cyclic AMP-dependent protein kinase in rat frontal cortex. J. Neurochem. 53, 1644–1647. Racagni G., Brunello N., Tinelli D., Perez J. (1992). New biochemical hypotheses on the mechanism of action of antidepressant drugs: cAMP-dependent phosphorylation system. Pharmacopsychiatry 25, 51–55. Nibuya M., Nestler E. J., Duman R. S. (1996). Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus. J. Neurosci. 16, 2365–2372. Thome J., Sakai N., Shin K., et al. (2000). cAMP response element-mediated gene transcription is upregulated by chronic antidepressant treatment. J. Neurosci. 20, 4030–4036. Manier D. H., Shelton R. C., Sulser F. (2002). Noradrenergic antidepressants: does chronic treatment increase or decrease nuclear CREB-P? J. Neural. Transm. 109, 91–99. Frechilla D., Otano A., Del Rio J. (1998). Effect of chronic antidepressant treatment on transcription factor binding activity in rat hippocampus and frontal cortex. Prog. Neuropsychopharmacol. Biol. Psychiatry 22, 787–802. Schwaninger M., Schofl C., Blume R., Rossig L., Knepel W. (1995). Inhibition by antidepressant drugs of cyclic AMP response element-binding protein/cyclic AMP response element-directed gene transcription. Mol. Pharmacol. 47, 1112–1118. Hurst H. C. (1994). Protein Profile. London, UK: Academic Press. Porsolt R. D., Bertin A., Jalfre M. (1978). “Behavioural despair” in rats and mice: strain differences and the effects of imipramine. Eur. J. Pharmacol. 51, 291–294. Steru L., Chermat R., Thierry B., Simon P. (1985). The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85, 367–370. Lucki I. (1997). The forced swimming test as a model for core and component behavioral effects of antidepressant drugs. Behav. Pharmacol. 8, 523–532. Weiss J. M., Kilts C. D. (1998). Textbook of Psychopharmacology. Arlington, VA: American Psychiatry Press. Chen A. C., Shirayama Y., Shin K., Neve R. L., Duman R. S. (2001). Expression of the cAMP response element binding protein (CREB) in hippocampus produces an antidepressant effect. Biol. Psychiatry 49, 753–762. Pliakas A. M., Carlson R. R., Neve R. L., Konradi C., Nestler E. J., Carlezon W. A., Jr. (2001). Altered responsiveness to cocaine and increased immobility in the forced swim test associated with elevated cAMP response element-binding protein expression in nucleus accumbens. J. Neurosci. 21, 7397–7403. Newton S. S., Thome J., Wallace T. L., et al. (2002). Inhibition of cAMP response element-binding protein or dynorphin in the nucleus accumbens produces an antidepressant-like effect. J. Neurosci. 22, 10,883–10,890. Hummler E., Cole T. J., Blendy J. A., et al. (1994). Targeted mutation of the CREB gene: compensation within the CREB/ATF family of transcription factors. Proc. Natl. Acad. Sci. USA 91, 5647–5651. Walters C. L., Blendy J. A. (2001). Different requirements for cAMP response element binding protein in positive and negative reinforcing properties of drugs of abuse. J. Neurosci. 21, 9438–9444. Graves L., Dalvi A., Lucki I., Blendy J. A., Abel T. (2002). Behavioral analysis of the CREBαΔ mutation on a B6/129 F1 hybrid background. Hippocampus 12, 18–26. Foulkes N. S., Borrelli E., Sassone-Corsi P. (1991). CREM gene: use of alternative DNA-binding domains generates multiple antagonists of cAMP-induced transcription. Cell 64, 739–749. Delmas V., Laoide B. M., Masquilier D., de Groot R. P., Foulkes N. S., Sassone-Corsi P. (1992). Alternative usage of initiation codons in mRNA encoding the cAMP-responsive-element modulator generates regulators with opposite functions. Proc. Natl. Acad. Sci. USA 89, 4226–4230. Foulkes N. S., Sassone-Corsi P. (1992). More is better: activators and repressors from the same gene. Cell 68, 411–414. Laoide B. M., Foulkes N. S., Schlotter F., Sassone-Corsi P. (1993). The functional versatility of CREM is determined by its modular structure. EMBO J. 12, 1179–1191. Maldonado R., Smadja C., Mazzucchelli C., Sassone-Corsi P., Mazucchelli C. (1999). Altered emotional and locomotor responses in mice deficient in the transcription factor CREM. Proc. Natl. Acad. Sci. USA 96, 14,094–14,099. Conti A. C., Blendy J. A. (2004). CREM mediates suppression of swim-stress induced HPA axis activity following antidepressant treatment. J. Neurosci., in press. Shieh P. B., Hu S. C., Bobb K., Timmusk T., Ghosh A. (1998). Identification of a signaling pathway involved in calcium regulation of BDNF expression. Neuron 20, 727–740. Saarelainen T., Hendolin P., Lucas G., et al. (2003). Activation of the trkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. J. Neurosci. 23, 349–357. Nibuya M., Morinobu S., Duman R. S. (1995). Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J. Neurosci. 15, 7539–7547. Siuciak J. A., Lewis D. R., Wiegand S. J., Lindsay R. M. (1997). Antidepressant-like effect of brain-derived neurotrophic factor (BDNF). Pharmacol. Biochem. Behav. 56, 131–137. Shirayama Y., Chen A. C., Nakagawa S., Russell D. S., Duman R. S. (2002). Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J. Neurosci. 22, 3251–3261. Chen B., Dowlatshahi D., MacQueen G. M., Wang J. F., Young L. T. (2001). Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol. Psychiatry 50, 260–265. Tao X., Finkbeiner S., Arnold D. B., Shaywitz A. J., Greenberg M. E. (1998). Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron 20, 709–726. Carlezon W. A., Jr., Thome J., Olson V. G., et al. (1998). Regulation of cocaine reward by CREB. Science 282, 2272–2275. Sakai N., Thome J., Newton S. S., et al. (2002). Inducible and brain region-specific CREB transgenic mice. Mol. Pharmacol. 61, 1453–1464. Russo-Neustadt A., Beard R. C., Cotman C. W. (1999). Exercise, antidepressant medications, and enhanced brain derived neurotrophic factor expression. Neuropsychopharmacology 21, 679–682. Memberg S. P., Hall A. K. (1995). Proliferation, differentiation, and survival of rat sensory neuron precursors in vitro require specific trophic factors. Mol. Cell Neurosci. 6, 323–335. Palmer T. D., Takahashi J., Gage F. H. (1997). The adult rat hippocampus contains primordial neural stem cells. Mol. Cell Neurosci. 8, 389–404. Takahashi J., Palmer T. D., Gage F. H. (1999). Retinoic acid and neurotrophins collaborate to regulate neurogenesis in adult-derived neural stem cell cultures. J. Neurobiol. 38, 65–81. Smith M. A., Makino S., Kvetnansky R., Post R. M. (1995). Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J. Neurosci. 15, 1768–1777. Duman R. S., Malberg J., Nakagawa S., D’Sa C. (2000). Neuronal plasticity and survival in mood disorders. Biol. Psychiatry 48, 732–739. Malberg J. E., Eisch A. J., Nestler E. J., Duman R. S. (2000). Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J. Neurosci. 20, 9104–9110. Lee H. J., Kim J. W., Yim S. V., et al. (2001). Fluoxetine enhances cell proliferation and prevents apoptosis in dentate gyrus of maternally separated rats. Mol. Psychiatry 6, 610,725–610,728. Czeh B., Michaelis T., Watanabe T., et al. (2001). Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc. Natl. Acad. Sci. USA 98, 12,796–12,801. Nakagawa S., Kim J. E., Lee R., et al. (2002). Regulation of neurogenesis in adult mouse hippocampus by cAMP and the cAMP response element-binding protein. J. Neurosci. 22, 3673–3682. Furth P. A., St. Onge L., Boger H., et al. (1994). Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter. Proc. Natl. Acad. Sci. USA 91, 9302–9306. Chen J., Kelz M. B., Zeng G., et al. (1998). Transgenic animals with inducible, targeted gene expression in brain. Mol. Pharmacol. 54, 495–503. Struthers R. S., Vale W. W., Arias C., Sawchenko P. E., Montminy M. R. (1991). Somatotroph hypoplasia and dwarfism in transgenic mice expressing a non-phosphorylatable CREB mutant. Nature 350, 662–664. Bourtchuladze R., Frenguelli B., Blendy J., Cioffi D., Schutz G., Sliva A. J. (1994). Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79, 59–68. Conti A. C., Cryan J. F., Dalvi A., Lucki I., Blendy J. A. (2002). cAMP responsive elementbinding protein is essential for the upregulation of brain-derived neurotrophic factor transcription, but not the behavioral or endocrine responses to antidepressant drugs. J. Neurosci. 22, 3262–3268. Mantamadiotis T., Lemberger T., Bleckmann S. C., et al. (2002). Disruption of CREB function in brain leads to neurodegeneration. Nat. Gen. 31, 47–54. Balschun D., Wolfer D. P., Gass P., et al. (2003). Does cAMP responsive element-binding protein have a pivotal role in hippocampal synaptic plasticity and hippocampus-dependent memory? J. Neurosci. 23, 6304–6314.