A phase I open-label dose-escalation study of the anti-HER3 monoclonal antibody LJM716 in patients with advanced squamous cell carcinoma of the esophagus or head and neck and HER2-overexpressing breast or gastric cancer

BMC Cancer - Tập 17 - Trang 1-11 - 2017
Kerry Lynn Reynolds1, Philippe L. Bedard2, Se-Hoon Lee3, Chia-Chi Lin4, Josep Tabernero5, Maria Alsina5, Ezra Cohen6, José Baselga7, George Blumenschein8, Donna M. Graham, Ignacio Garrido-Laguna9, Dejan Juric1, Sunil Sharma9, Ravi Salgia10,11, Abdelkader Seroutou12, Xianbin Tian13, Rose Fernandez13, Alex Morozov13,14, Qing Sheng15, Thiruvamoor Ramkumar13, Angela Zubel12, Yung-Jue Bang3
1Massachusetts General Hospital, Boston, USA
2Princess Margaret Cancer Centre, Toronto, Canada
3Seoul National University College of Medicine, Seoul, Republic of Korea
4National Taiwan University Hospital, Taipei, Taiwan
5Vall d’Hebron University Hospital and Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, Barcelona, Spain
6Moores Cancer Center, University of California at San Diego, La Jolla, USA
7Memorial Sloan Kettering Cancer Center, New York, USA
8Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
9Huntsman Cancer Institute, Salt Lake City, USA
10University of Chicago, Chicago, USA
11City of Hope, Department of Medical Oncology and Therapeutics Research, Duarte, USA
12Novartis Pharma AG, Basel, Switzerland
13Novartis Pharmaceuticals Corporation, East Hanover, USA
14Pfizer Inc, New York, USA
15Novartis Institutes for BioMedical Research, Cambridge, USA

Tóm tắt

Human epidermal growth factor receptor 3 (HER3) is important in maintaining epidermal growth factor receptor-driven cancers and mediating resistance to targeted therapy. A phase I study of anti-HER3 monoclonal antibody LJM716 was conducted with the primary objective to identify the maximum tolerated dose (MTD) and/or recommended dose for expansion (RDE), and dosing schedule. Secondary objectives were to characterize safety/tolerability, pharmacokinetics, pharmacodynamics, and preliminary antitumor activity. This open-label, dose-finding study comprised dose escalation, followed by expansion in patients with squamous cell carcinoma of the head and neck or esophagus, and HER2-overexpressing metastatic breast cancer or gastric cancer. During dose escalation, patients received LJM716 intravenous once weekly (QW) or every two weeks (Q2W), in 28-day cycles. An adaptive Bayesian logistic regression model was used to guide dose escalation and establish the RDE. Exploratory pharmacodynamic tumor studies evaluated modulation of HER3 signaling. Patients received LJM716 3–40 mg/kg QW and 20 mg/kg Q2W (54 patients; 36 patients at 40 mg/kg QW). No dose-limiting toxicities (DLTs) were reported during dose-escalation. One patient experienced two DLTs (diarrhea, hypokalemia [both grade 3]) in the expansion phase. The RDE was 40 mg/kg QW, providing drug levels above the preclinical minimum effective concentration. One patient with gastric cancer had an unconfirmed partial response; 17/54 patients had stable disease, two lasting >30 weeks. Down-modulation of phospho-HER3 was observed in paired tumor samples. LJM716 was well tolerated; the MTD was not reached, and the RDE was 40 mg/kg QW. Further development of LJM716 is ongoing. Clinicaltrials.gov registry number NCT01598077 (registered on 4 May, 2012).

Tài liệu tham khảo

Amin DN, Campbell MR, Moasser MM. The role of HER3, the unpretentious member of the HER family, in cancer biology and cancer therapeutics. Semin Cell Dev Biol. 2010;21:944–50. Jura N, Shan Y, Cao X, Shaw DE, Kuriyan J. Structural analysis of the catalytically inactive kinase domain of the human EGF receptor 3. Proc Natl Acad Sci U S A. 2009;106:21608–13. Holbro T, Beerli RR, Maurer F, Koziczak M, Barbas CF 3rd, Hynes NE. The ErbB2/ErbB3 heterodimer functions as an oncogenic unit: ErbB2 requires ErbB3 to drive breast tumor cell proliferation. Proc Natl Acad Sci U S A. 2003;100:8933–8. Garner AP, Bialucha CU, Sprague ER, Garrett JT, Sheng Q, Li S, et al. An antibody that locks HER3 in the inactive conformation inhibits tumor growth driven by HER2 or neuregulin. Cancer Res. 2013;73:6024–35. Ghosh R, Narasanna A, Wang SE, Liu S, Chakrabarty A, Balko JM, et al. Trastuzumab has preferential activity against breast cancers driven by HER2 homodimers. Cancer Res. 2011;71:1871–82. Swain SM, Kim SB, Cortés J, Ro J, Semiglazov V, Campone M, et al. Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA study): overall survival results from a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 2013;14:461–71. Kono K, Mimura K, Fujii H, Shabbir A, Yong WP, Jimmy SA. Potential therapeutic significance of HER-family in esophageal squamous cell carcinoma. Ann Thorac Cardiovasc Surg. 2012;18:506–13. Nahta R. Pharmacological strategies to overcome HER2 cross-talk and Trastuzumab resistance. Curr Med Chem. 2012;19:1065–75. Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376:687–97. Wilson TR, Lee DY, Berry L, Shames DS, Settleman J. Neuregulin-1-mediated autocrine signaling underlies sensitivity to HER2 kinase inhibitors in a subset of human cancers. Cancer Cell. 2011;20:158–72. Meetze K, Vincent S, Tyler S, Mazsa EK, Delpero AR, Bottega S, et al. Neuregulin 1 expression is a predictive biomarker for response to AV-203, an ERBB3 inhibitory antibody, in human tumor models. Clin Cancer Res. 2015;21:1106–14. Sheng Q, Pinzon-Ortiz M, Das R, Huang A, Rong X, Cao ZA. Targeting HER3 and IGF1R in NRG1 high lung squamous cell carcinoma. Cancer Res. 2014;74 Abstr. LB-237 Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol. 2013;31:3997–4013. Wolff AC, Hammond ME, Schwartz JN, Hagerty KL, Allred DC, Cote RJ, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. Arch Pathol Lab Med. 2007;131:18–43. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–47. Rogatko A, Schoeneck D, Jonas W, Tighiouart M, Khuri FR, Porter A. Translation of innovative designs into phase I trials. J Clin Oncol. 2007;25:49826. Babb J, Rogatko A, Zacks S. Cancer phase I clinical trials: efficient dose escalation with overdose control. Stat Med. 1998;17:1103–20. Neuenschwander B, Branson M, Gsponer T. Critical aspects of the Bayesian approach to phase I cancer trials. Stat Med. 2008;27:2420–39. U. S. Department of Health and Human Services (National Institutes of Health/National Cancer Institute). Common Terminology Criteria for Adverse Events (CTCAE) Version 4.03; June 14, 2010. Cortés J, Fumoleau P, Bianchi GV, Petrella TM, Gelmon K, Pivot X, et al. Pertuzumab monotherapy after trastuzumab-based treatment and subsequent reintroduction of trastuzumab: activity and tolerability in patients with advanced human epidermal growth factor receptor 2-positive breast cancer. J Clin Oncol. 2012;30:1594–600. LoRusso P, Janne PA, Oliveira M, Rizvi N, Malburg L, Keedy V, et al. Phase I study of U3-1287, a fully human anti-HER3 monoclonal antibody, in patients with advanced solid tumors. Clin Cancer Res. 2013;19:3078–87. Nishio M, Horiike A, Murakami H, Yamamoto N, Kaneda H, Nakagawa K, et al. Phase I study of the HER3-targeted antibody patritumab (U3-1287) combined with erlotinib in Japanese patients with non-small cell lung cancer. Lung Cancer. 2015;88:275–81. Lassen UN, Cervantes Ruiperez A, Fleitas T, Meulendijks D, Schellens J, Lolkemar M, et al. Phase IB trial of RG7116, a glycoengineered monoclonal antibody targeting HER3, in combination with cetuximab or erlotinib in patients with advanced/metastatic tumors of epithelial cell origin expressing HER3 protein. Ann Oncol. 2014;25(Suppl 4):Abstr. iv147:444O. Shah DP, Chandarlapaty S, Dickler MN, Ulaner G, Zamora SJ, Sterlin V, et al. Phase I study of LJM716, BYL719, and trastuzumab in patients (pts) with HER2-amplified (HER2+) metastatic breast cancer (MBC). J Clin Oncol. 2015;33(Suppl):Abstr. 590.