Cellular oxygen sensing, signalling and how to survive translational arrest in hypoxia

Acta Physiologica - Tập 195 Số 2 - Trang 205-230 - 2009
Michael Fähling1
1Institut für Vegetative Physiologie, Charité–Universitätsmedizin Berlin, Berlin, Germany

Tóm tắt

Abstract

Hypoxia is a consequence of inadequate oxygen availability. At the cellular level, lowered oxygen concentration activates signal cascades including numerous receptors, ion channels, second messengers, as well as several protein kinases and phosphatases. This, in turn, activates trans‐factors like transcription factors, RNA‐binding proteins and miRNAs, mediating an alteration in gene expression control. Each cell type has its unique constellation of oxygen sensors, couplers and effectors that determine the activation and predominance of several independent hypoxia‐sensitive pathways. Hence, altered gene expression patterns in hypoxia result from a complex regulatory network with multiple divergences and convergences. Although hundreds of genes are activated by transcriptional control in hypoxia, metabolic rate depression, as a consequence of reduced ATP level, causes inhibition of mRNA translation. In a multi‐phase response to hypoxia, global protein synthesis is suppressed, mainly by phosphorylation of eIF2‐alpha by PERK and inhibition of mTOR, causing suppression of 5′‐cap‐dependent mRNA translation. Growing evidence suggests that mRNAs undergo sorting at stress granules, which determines the fate of mRNA as to whether being translated, stored, or degraded. Data indicate that translation is suppressed only at ‘free’ polysomes, but is active at subsets of membrane‐bound ribosomes. The recruitment of specific mRNAs into subcellular compartments seems to be crucial for local mRNA translation in prolonged hypoxia. Furthermore, ribosomes themselves may play a significant role in targeting mRNAs for translation. This review summarizes the multiple facets of the cellular adaptation to hypoxia observed in mammals.

Từ khóa


Tài liệu tham khảo

10.1515/BC.2008.022

10.1016/j.cardiores.2006.04.008

10.1152/ajpregu.00840.2004

10.1038/sj.onc.1202019

10.1016/S0006-291X(03)00818-0

10.1242/jcs.115.16.3227

10.1083/jcb.200512082

10.1073/pnas.91.24.11527

10.1172/JCI333

Archer S.L., 2000, Molecular identification of O2 sensors and O2‐sensitive potassium channels in the pulmonary circulation, Adv Exp Med Biol, 475, 219

10.1074/jbc.M212770200

10.1261/rna.157806

10.1172/JCI11991

10.1016/S0092-8674(04)00045-5

10.1074/jbc.273.31.19834

10.1006/bbrc.1997.7907

10.1091/mbc.E07-04-0391

10.4161/cbt.5.7.2972

10.1016/j.cell.2006.04.031

10.1016/S0959-4388(97)80072-4

10.1128/MCB.24.17.7469-7482.2004

10.1128/MCB.01145-06

10.1074/jbc.C200171200

10.1074/jbc.M411492200

10.1016/j.bbrc.2008.03.056

10.1016/S0092-8674(02)01083-8

Van Breukelen F., 2000, Depression of nuclear transcription and extension of mRNA half‐life under anoxia in Artemia franciscana embryos, J Exp Biol, 203, 1123, 10.1242/jeb.203.7.1123

10.1038/ki.1988.164

10.1101/gad.1256804

10.1101/gad.1145503

10.1126/science.1066373

10.1002/j.1460-2075.1996.tb00911.x

10.1016/j.cbpc.2004.04.002

10.1152/physrev.1996.76.3.839

10.1042/bj3120163

10.1073/pnas.95.20.11715

10.1002/aja.1001780102

10.1016/S1357-2725(98)00127-7

10.1073/pnas.0337412100

10.1016/j.cardiores.2003.07.003

10.1128/MCB.26.10.3955-3965.2006

10.1074/jbc.274.33.23570

10.1016/S1096-4959(00)00326-2

10.1242/jeb.00220

10.1042/bj2720743

10.1074/jbc.271.6.3293

Czyzyk‐Krzeska M.F., 1994, Hypoxia stimulates binding of a cytoplasmic protein to a pyrimidine‐rich sequence in the 3′‐untranslated region of rat tyrosine hydroxylase mRNA, J Biol Chem, 269, 9940, 10.1016/S0021-9258(17)36973-9

10.1101/gad.13.22.2905

10.1074/jbc.M212534200

10.1126/science.1063518

10.1016/S0092-8674(02)00642-6

10.1038/nrm760

10.1016/j.tins.2007.08.003

10.1074/jbc.273.19.11619

10.1016/S0959-440X(97)80058-9

10.1161/CIRCULATIONAHA.106.669697

10.1016/S1097-2765(02)00706-2

10.1038/sj.onc.1206645

10.1002/9780470035009.ch18

10.1016/j.bbaexp.2005.08.005

10.1074/jbc.M510925200

10.1074/jbc.M604939200

Fähling M., 2008, Rate of protein synthesis under hypometabolic conditions: the down and up and down, FASEB J, 22, 1174, 10.1096/fasebj.22.1_supplement.1174.12

10.1016/0022-2836(70)90091-4

10.1152/ajpregu.00577.2003

10.1016/S0955-0674(02)00336-8

10.1038/nrg2290

10.1038/35041687

Flemming B., 2000, Oxygen and renal hemodynamics in the conscious rat, J Am Soc Nephrol, 11, 18, 10.1681/ASN.V11118

10.1161/01.RES.0000016837.26733.BE

10.1124/mol.107.042549

10.1042/BJ20051839

10.1007/s002100000313

10.1211/0022357011775631

10.1074/jbc.M702679200

10.1152/ajpheart.00132.2008

10.1128/MCB.00973-07

10.1038/nrm1488

10.1016/j.cell.2004.08.025

10.1101/gad.1243304

10.1101/gad.12.4.502

10.1146/annurev.biochem.68.1.913

10.1101/gad.887201

10.1073/pnas.97.20.11080

10.1182/blood.V77.2.271.271

10.1016/S0167-4781(00)00172-X

10.1039/b708867a

10.1146/annurev.cellbio.14.1.399

10.1681/ASN.2006101141

10.1016/j.cmet.2005.05.001

10.1016/j.molcel.2008.03.003

10.1101/gad.1477507

10.1016/j.bbrc.2004.02.162

10.1006/bbrc.1999.1040

10.1146/annurev.ph.58.030196.002543

10.1113/jphysiol.2006.108944

10.1038/16729

10.1038/nrc704

10.1023/B:JOBB.0000041765.27145.08

10.1038/nature05939

10.1101/gad.891101

10.1126/science.1063290

10.1016/S0070-2153(06)76007-0

10.1073/pnas.93.18.9493

10.1038/nrm1618

10.1023/A:1020992418511

10.1016/S0960-9822(02)01077-1

10.1016/1357-2725(96)00059-3

10.1371/journal.pone.0000116

10.1096/fj.05-5086com

10.1634/stemcells.2006-0686

10.1080/09687680118799

10.1101/gad.1110003

10.1073/pnas.192342099

10.1042/BST0331231

10.1128/jvi.62.8.2636-2643.1988

10.1073/pnas.91.10.4441

10.1152/physrev.1992.72.2.449

10.1016/j.biocel.2005.05.013

Jiang B.H., 2001, Phosphatidylinositol 3‐kinase signaling controls levels of hypoxia‐inducible factor 1, Cell Growth Differ, 12, 363

10.1016/j.cellsig.2006.12.014

10.1016/j.mrfmmm.2006.10.007

10.1093/carcin/bgn032

10.1002/jcp.21446

10.1083/jcb.147.7.1431

10.1091/mbc.01-05-0221

10.1038/nrg2111

10.1016/S1097-2765(02)00559-2

10.1042/BSE0430077

10.1073/pnas.90.8.3471

10.1016/S0092-8674(02)00808-5

10.1128/MCB.23.2.708-720.2003

10.1016/S1357-2725(98)00128-9

10.1152/ajpcell.00314.2002

10.1073/pnas.022634199

Klotz L.O., 2000, Peroxynitrite activates the phosphoinositide 3‐kinase/Akt pathway in human skin primary fibroblasts, Biochem J, 352, 219, 10.1042/bj3520219

10.1038/sj.onc.1210147

10.1074/jbc.274.29.20358

10.1016/j.cell.2007.08.037

10.1016/j.radonc.2005.06.036

10.1038/sj.emboj.7600998

10.1128/MCB.22.21.7405-7416.2002

10.1016/S0378-1119(99)00210-3

10.1093/nar/gki958

10.1038/nrg1125

10.4161/cc.6.12.4410

10.1038/sj.cdd.4402310

10.1042/bse0430043

10.1152/ajpcell.1998.274.6.C1592

10.1016/j.pbiomolbio.2005.07.001

10.1161/01.RES.0000249530.85542.d4

10.1091/mbc.02-02-0017

10.1126/stke.2003.179.re6

10.1111/j.1469-7793.2001.00211.x

10.1073/pnas.082119899

10.1074/jbc.M306104200

10.1261/rna.2318906

10.1038/376737a0

10.1016/j.ceb.2005.06.005

10.1074/jbc.271.5.2746

10.1016/j.brainres.2007.12.059

10.1016/j.molcel.2006.01.010

10.1038/sj.cr.7310070

10.1016/S0959-4388(03)00093-X

10.1146/annurev.physiol.63.1.259

10.1152/japplphysiol.00929.2003

10.4067/S0716-97602005000200003

10.1182/blood-2004-07-2958

10.1016/j.gene.2005.04.022

10.1046/j.1365-201x.2000.00709.x

10.1111/j.1748-1716.2007.01800.x

10.1089/ars.2005.7.472

10.1073/pnas.192442499

10.1182/blood.V90.9.3322

10.1074/jbc.M412882200

10.1016/j.cell.2007.09.021

10.1093/nar/gkg165

10.1038/ki.1997.73

10.1016/j.ceca.2006.04.004

10.1016/S1097-2765(03)00093-5

10.1101/gad.339105

10.1080/10739680600930222

10.1016/j.gene.2007.08.006

10.1291/hypres.31.175

10.1016/S0955-0674(02)00353-8

10.1074/jbc.270.40.23774

10.1089/ars.2007.1683

10.1016/j.febslet.2007.10.002

Okuno F., 1983, Calcium requirement for anoxic liver cell injury, Res Commun Chem Pathol Pharmacol, 39, 437

10.1016/j.resp.2007.02.009

10.1073/pnas.0401723101

10.1196/annals.1306.001

10.1016/j.molcel.2007.02.011

10.1152/ajpregu.00357.2007

10.1152/ajpcell.00534.2002

10.1038/334320a0

10.1002/bies.20570

10.1101/gr.1680803

10.1016/j.gene.2007.07.007

10.1016/S0378-1119(97)00407-1

Pierson D.J., 2000, Pathophysiology and clinical effects of chronic hypoxia, Respir Care, 45, 39

10.1111/j.1365-2958.2007.05831.x

10.1016/S0092-8674(01)00333-6

10.1016/S0959-437X(99)00005-2

10.1042/BJ20070024

10.1007/BF00219323

10.1038/nm0603-677

10.1261/rna.721108

10.1016/S0891-5849(02)01111-5

10.1038/sj.onc.1209889

10.1080/09687680010026313

10.1152/physrev.1997.77.3.731

10.1093/emboj/17.11.3005

10.1016/0014-5793(91)80798-8

10.1172/JCI200318181

10.1074/jbc.M010753200

10.1074/jbc.M506096200

10.1073/pnas.170276797

10.1006/bbrc.1998.8639

10.1016/j.transci.2004.06.001

10.1515/BC.2006.170

10.1074/jbc.M603536200

10.1182/blood-2003-02-0433

10.1038/nrm1366

10.1146/annurev.physiol.61.1.337

10.1016/S0092-8674(01)00518-9

10.1038/nrc1187

10.1126/stke.4072007cm8

10.1128/MCB.12.12.5447

10.1126/stke.2002.146.re11

10.1016/j.ceca.2004.02.006

Shanley P.F., 1991, Calcium and acidosis in renal hypoxia, Lab Invest, 65, 298

10.1016/0167-4889(89)90125-0

10.1128/MCB.01446-07

10.1038/sj.emboj.7601977

10.1146/annurev.immunol.22.012703.104731

Spicher A., 1998, Highly conserved RNA sequences that are sensors of environmental stress, Mol Cell Biol, 18, 12, 10.1128/MCB.18.12.7371

10.1042/BC20070098

10.1074/jbc.C100177200

10.1074/jbc.272.40.24980

10.1091/mbc.e05-07-0685

10.1016/S0014-5793(02)02247-0

10.3233/JAD-2001-3401

10.1017/S1464793103006195

Strubelt O., 1988, The involvement of extracellular calcium in hypoxic injury to the isolated rat liver, Res Commun Chem Pathol Pharmacol, 61, 327

10.1073/pnas.022644499

10.1186/gb-2003-4-7-r44

10.1042/BJ20071249

10.1073/pnas.91.24.11477

10.1261/rna.534807

10.1084/jem.20040915

10.1016/j.bbamcr.2007.06.002

10.1016/j.bbrc.2003.07.019

10.1128/MCB.21.22.7747-7760.2001

10.1023/B:MCBI.0000044378.09409.b5

10.1016/j.canlet.2008.02.044

10.1101/gad.1399806

10.1042/bj3460561

10.1089/ars.2007.1628

10.1182/blood.V98.2.296

10.1016/S1357-2725(98)00134-4

10.1128/MCB.02078-06

10.1074/jbc.275.19.14624

10.1093/emboj/20.16.4370

10.1016/S0968-0004(99)01460-7

10.1161/01.RES.0000247068.75808.3f

10.1056/NEJMra050002

10.1096/fj.01-0944rev

10.1016/j.semcdb.2005.03.009

10.1152/ajpcell.00546.2005

10.1016/j.yjmcc.2004.11.020

10.1152/ajpcell.00458.2006

10.1074/jbc.M710079200

Yuan X.J., 1990, Contrasting effects of hypoxia on tension in rat pulmonary and mesenteric arteries, Am J Physiol, 259, H281

10.1681/ASN.2006111194

10.1016/j.molimm.2007.12.002

Zhong H., 2000, Modulation of hypoxia‐inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3‐kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics, Cancer Res, 60, 1541

10.1042/bj2850345