Effects of repeated transcranial direct current stimulation on smoking, craving and brain reactivity to smoking cues

Scientific Reports - Tập 8 Số 1
Marine Mondino1,2,3,4,5, David Luck6, Stéphanie Grot7,6, Dominique Januel8, Marie‐Françoise Suaud‐Chagny1,3,4,5, Emmanuel Poulet1,2,3,4,5, Jérôme Brunelin1,2,3,4,5
1CNRS, UMR5292
2Centre Hospitalier Le Vinatier, Bron, France
3INSERM, U1028
4Lyon Neuroscience Research Center, Psychiatric Disorders: from Resistance to Response Team, Lyon, France
5University Lyon 1, Villeurbanne, France
6Department of Psychiatry, Faculty of Medicine, Université de Montréal, Montreal, Canada
7Centre de recherche, Institut universitaire en santé mentale de Montréal, Montreal, Canada
8URC, Pole G03, EPS Ville Evrard, Neuilly Sur Marne, France

Tóm tắt

AbstractRecent studies have shown that transcranial direct current stimulation (tDCS) may reduce craving and smoking. However, little is known regarding brain correlates of these behavioral changes. We aimed to evaluate whether 10 sessions of tDCS modulate cigarette consumption, craving and brain reactivity to smoking cues in subjects with tobacco use disorder (TUD). In a double blind parallel-arms study, 29 subjects with TUD who wished to quit smoking were randomly assigned to receive 10 sessions of either active or sham tDCS applied with the anode over the right dorsolateral prefrontal cortex (DLPFC) and a large cathode over the left occipital region. As compared to sham, active tDCS significantly reduced smoking craving and increased brain reactivity to smoking-cues within the right posterior cingulate, as measured with a functional magnetic resonance imaging event-related paradigm. However, we failed to find a significant difference between active and sham groups regarding the self-reported number of cigarettes smoked and the exhaled carbon monoxide during one month. These findings suggested that 10 sessions of tDCS over the right DLPFC may reduce craving by modulating activity within the resisting-to-smoke network but might not be significantly more effective than sham to decrease cigarette consumption.

Từ khóa


Tài liệu tham khảo

World Health Organization. WHO report on the global tobacco epidemic (World Health Organization 2015).

Cahill, K., Stevens, S., Perera, R. & Lancaster, T. Pharmacological interventions for smoking cessation: an overview and network meta-analysis. Cochrane Database Syst. Rev. 5, CD009329 (2013).

Stead, L. F., Koilpillai, P., Fanshawe, T. R. & Lancaster, T. Combined pharmacotherapy and behavioural interventions for smoking cessation. Cochrane Database Syst. Rev. 3, CD008286 (2016).

Piasecki, T. M. Relapse to smoking. Clin. Psychol. Rev. 26, 196–215 (2006).

Shafi, M. M., Westover, M. B., Fox, M. D. & Pascual-Leone, A. Exploration and modulation of brain network interactions with noninvasive brain stimulation in combination with neuroimaging. Eur. J. Neurosci. 35, 805–825 (2012).

Mondino, M. et al. Can transcranial direct current stimulation (tDCS) alleviate symptoms and improve cognition in psychiatric disorders? World J. Biol. Psychiatry 15, 261–275 (2014).

Koob, G. F. & Volkow, N. D. Neurocircuitry of Addiction. Neuropsychopharmacology 35, 217–238 (2010).

Engelmann, J. M. et al. Neural substrates of smoking cue reactivity: A meta-analysis of fMRI studies. NeuroImage 60, 252–262 (2012).

Fecteau, S., Fregni, F., Boggio, P. S., Camprodon, J. A. & Pascual-Leone, A. Neuromodulation of decision-making in the addictive brain. Subst. Use Misuse 45, 1766–1786 (2010).

Fregni, F. et al. Cortical stimulation of the prefrontal cortex with transcranial direct current stimulation reduces cue-provoked smoking craving: a randomized, sham-controlled study. J. Clin. Psychiatry 69, 32–40 (2008).

Boggio, P. S. et al. Cumulative priming effects of cortical stimulation on smoking cue-induced craving. Neurosci. Lett. 463, 82–86 (2009).

Falcone, M. et al. Transcranial Direct Current Brain Stimulation Increases Ability to Resist Smoking. Brain Stimul. 9, 191–196 (2016).

Fecteau, S. et al. Modulation of smoking and decision-making behaviors with transcranial direct current stimulation in tobacco smokers: a preliminary study. Drug Alcohol Depend. 140, 78–84 (2014).

Xu, J., Fregni, F., Brody, A. L. & Rahman, A. S. Transcranial direct current stimulation reduces negative affect but not cigarette craving in overnight abstinent smokers. Front. Psychiatry 4, 112 (2013).

Jansen, J. M. et al. Effects of non-invasive neurostimulation on craving: a meta-analysis. Neurosci. Biobehav. Rev. 37, 2472–2480 (2013).

Kühn, S. & Gallinat, J. Common biology of craving across legal and illegal drugs - a quantitative meta-analysis of cue-reactivity brain response. Eur. J. Neurosci. 33, 1318–1326 (2011).

Heatherton, T. F., Kozlowski, L. T., Frecker, R. C. & Fagerström, K. O. The Fagerström Test for Nicotine Dependence: a revision of the Fagerström Tolerance Questionnaire. Br. J. Addict. 86, 1119–1127 (1991).

Beck, A. T., Steer, R. A. & Brown, G. K. BDI-II, Beck depression inventory: manual (Psychological Corp.; Harcourt Brace, 1996).

Aubin, H.-J. et al. Questionnaire de motivation à l’arrêt du tabac (Q-MAT): Construction et validation. Alcoologie et Addictologie 26, 311–316 (2004).

Nitsche, M. A. et al. Transcranial direct current stimulation: State of the art 2008. Brain Stimul. 1, 206–223 (2008).

Thielscher, A., Antunes, A. & Saturnino, G. B. Field modeling for transcranial magnetic stimulation: A useful tool to understand the physiological effects of TMS? In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 222–225, https://doi.org/10.1109/EMBC.2015.7318340 (2015).

Geuzaine, C. & Remacle, J.-F. Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities. Int. J. Numer. Methods Eng. 79, 1309–1331 (2009).

Shiffman, S. et al. Efficacy of acute administration of nicotine gum in relief of cue-provoked cigarette craving. Psychopharmacology (Berl.) 166, 343–350 (2003).

Gilbert, D. & Rabinovich, N. International smoking image series (with neutral counterparts), version 1.2. Integrative Neuroscience Laboratory, Department of Psychology, Southern Illinois University, Carbondale, IL (1999).

R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/ (2017).

Slotnick, S. D., Moo, L. R., Segal, J. B. & Hart, J. Distinct prefrontal cortex activity associated with item memory and source memory for visual shapes. Brain Res. Cogn. Brain Res. 17, 75–82 (2003).

Lieberman, M. D. & Cunningham, W. A. Type I and Type II error concerns in fMRI research: re-balancing the scale. Soc. Cogn. Affect. Neurosci. 4, 423–428 (2009).

Maldjian, J. A., Laurienti, P. J., Kraft, R. A. & Burdette, J. H. An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. NeuroImage 19, 1233–1239 (2003).

Dollfus, S., Lecardeur, L., Morello, R. & Etard, O. Placebo Response in Repetitive Transcranial Magnetic Stimulation Trials of Treatment of Auditory Hallucinations in Schizophrenia: A Meta-Analysis. Schizophr. Bull. 42, 301–308 (2016).

Bai, S., Dokos, S., Ho, K.-A. & Loo, C. A computational modelling study of transcranial direct current stimulation montages used in depression. NeuroImage 87, 332–344 (2014).

Ho, K.-A. et al. A pilot study of alternative transcranial direct current stimulation electrode montages for the treatment of major depression. J. Affect. Disord. 167, 251–258 (2014).

Vangeli, E., Stapleton, J., Smit, E. S., Borland, R. & West, R. Predictors of attempts to stop smoking and their success in adult general population samples: a systematic review. Addiction 106, 2110–2121 (2011).

Rostami, R., Kazemi, R., Nitsche, M. A., Gholipour, F. & Salehinejad, M. A. Clinical and demographic predictors of response to rTMS treatment in unipolar and bipolar depressive disorders. Clin. Neurophysiol. 128, 1961–1970 (2017).

Batsikadze, G., Paulus, W., Grundey, J., Kuo, M.-F. & Nitsche, M. A. Effect of the Nicotinic α4β2-receptor Partial Agonist Varenicline on Non-invasive Brain Stimulation-Induced Neuroplasticity in the Human Motor Cortex. Cereb. Cortex 25, 3249–3259 (2015).

Grundey, J. et al. Rapid Effect of Nicotine Intake on Neuroplasticity in Non-Smoking Humans. Front. Pharmacol. 3 (2012).

Thirugnanasambandam, N. et al. Nicotinergic Impact on Focal and Non-Focal Neuroplasticity Induced by Non-Invasive Brain Stimulation in Non-Smoking Humans. Neuropsychopharmacology 36, 879–886 (2011).

Grundey, J. et al. Neuroplasticity in cigarette smokers is altered under withdrawal and partially restituted by nicotine exposition. J. Neurosci. 32, 4156–4162 (2012).

Fraser, P. E. & Rosen, A. C. Transcranial Direct Current Stimulation and Behavioral Models of Smoking Addiction. Front. Psychiatry 3 (2012).

Yang, L.-Z. et al. Electrical stimulation reduces smokers’ craving by modulating the coupling between dorsal lateral prefrontal cortex and parahippocampal gyrus. Soc. Cogn. Affect. Neurosci. 12, 1296–1302 (2017).

Hartwell, K. J. et al. Neural correlates of craving and resisting craving for tobacco in nicotine dependent smokers. Addict. Biol. 16, 654–666 (2011).

Kang, O.-S. et al. Individual differences in smoking-related cue reactivity in smokers: an eye-tracking and fMRI study. Prog. Neuropsychopharmacol. Biol. Psychiatry 38, 285–293 (2012).

Jarraya, B. et al. Disruption of cigarette smoking addiction after posterior cingulate damage. J. Neurosurg. 113, 1219–1221 (2010).

McClernon, F. J., Kozink, R. V., Lutz, A. M. & Rose, J. E. 24-h smoking abstinence potentiates fMRI-BOLD activation to smoking cues in cerebral cortex and dorsal striatum. Psychopharmacology (Berl.) 204, 25–35 (2009).

Brody, A. L. et al. Neural substrates of resisting craving during cigarette cue exposure. Biol. Psychiatry 62, 642–651 (2007).