A graphene film interlayer for enhanced electrical conductivity in a carbon-fibre/PEEK composite

Functional Composite Materials - Tập 2 - Trang 1-11 - 2021
Christopher Leow1, Peter B. Kreider1, Christian Notthoff2, Patrick Kluth2, Antonio Tricoli3, Paul Compston1
1ARC Training Centre for Automated Manufacture of Advanced Composites, Research School of Electrical, Energy and Materials Engineering, Australian National University, Canberra, Australia
2Department of Electronic Materials Engineering, Research School of Physics, Australian National University, Canberra, Australia
3Nanotechnology Research Laboratory, College of Engineering and Computer Science, The Australian National University, Canberra, Australia

Tóm tắt

Carbon-fibre reinforced composites are seeing increased deployment, especially in the aerospace industry, and the next-generation of these materials will need to meet demanding performance requirements beyond just specific strength. The incorporation of nanomaterials such as graphene into composites has great potential for enhancing electrical, thermal, and mechanical properties, which could then enable new capabilities such as built-in lightning strike protection and electromagnetic shielding. One major challenge is successful integration of nanomaterials into the composite during the manufacturing process especially for thermoplastic based composites. This work explores the spray deposition of exfoliated graphene in liquid suspensions for the nano-enhancement of electrical properties in carbon-fibre reinforced polyether ether keytone (PEEK) composites. Developed thin films were smooth with RMS roughness of 1.06 μm on Si substrates and RMS roughness of 1.27 μm on CF-PEEK tapes. The addition of 1.3 wt% graphene into the interlayers of CF-PEEK composites resulted in bulk electrical conductivity enhancement both in plane and through thickness of ~ 1100% and 67.5% respectively. This approach allows for pre-consolidation introduction of high-performance nanomaterials directly to thermoplastic prepregs which could open simple pathways for the in-situ manufacturing of carbon-fibre reinforced polymer nanocomposites.

Tài liệu tham khảo

T. Hu, X. Yu, Lightning Performance of Copper-Mesh Clad Composite Panels : Test and Simulation (2019) K.A. Imran, K.N. Shivakumar, Graphene-modified carbon/epoxy Nanocomposites: Electrical, thermal and mechanical properties. J. Thermoplast. Compos. Mater. 53, 93 (2019) K. Krushnamurty, M. Rini, I. Srikanth, P. Ghosal, A.P. Das, M. Deepa, C. Subrahmanyam, Conducting polymer coated Graphene oxide reinforced C-epoxy composites for enhanced electrical conduction. Compos. Part A Appl. Sci. Manuf. 80, 237 (2016) D.M. Delozier, K.A. Watson, J.G. Smith, J.W. Connell, Preparation and characterization of space durable polymer Nanocomposite films. Compos. Sci. Technol. 65, 749 (2005) J. Joseph, P.R. Munda, D.A. John, A.M. Sidpara, J. Paul, Graphene and CNT filled hybrid thermoplastic composites for enhanced EMI shielding effectiveness. Mater. Res. Express 6, 085617 (2019) N. Yamamoto, R. Guzman de Villoria, B.L. Wardle, Electrical and thermal property enhancement of fiber-reinforced polymer laminate composites through controlled implementation of multi-walled carbon nanotubes. Compos. Sci. Technol. 72, 2009 (2012) J. Wu, J. Chen, Y. Zhao, W. Liu, W. Zhang, Effect of electrophoretic condition on the electromagnetic interference shielding performance of reduced Graphene oxide-carbon fiber/epoxy resin composites. Compos. Part B Eng. 105, 167 (2016) C. González, J.J. Vilatela, J.M. Molina-Aldareguía, C.S. Lopes, J. LLorca, Structural composites for multifunctional applications: Current challenges and future trends. Prog. Mater. Sci. 89, pp. 194–251 U. Szeluga, B. Kumanek, B. Trzebicka, Synergy in hybrid polymer/Nanocarbon composites. A review. Compos. Part A Appl. Sci. Manuf. 73, 204 (2015) K.K. Sairajan, G.S. Aglietti, K.M. Mani, A review of multifunctional structure technology for aerospace applications. Acta Astronaut. 120, 30 (2016) L. Siebert, T. Schaller, F. Schütt, S. Kaps, J. Carstensen, S. Shree, J. Bahr, Y.K. Mishra, H.H. Sievers, R. Adelung, Perfect polymer interlocking by spherical particles: Capillary force shapes hierarchical composite undercuts. Nanoscale Horizons 4, 947 (2019) A.M. Díez-Pascual, M. Naffakh, M.A. Gómez, C. Marco, G. Ellis, M.T. Martínez, A. Ansón, J.M. González-Domínguez, Y. Martínez-Rubi, B. Simard, Development and characterization of PEEK/carbon nanotube composites. Carbon N Y 47, 3079 (2009) J.A. King, J.M. Tomasi, D.R. Klimek-McDonald, I. Miskioglu, G.M. Odegard, T.R. King, J.W. Sutherland, Effects of carbon fillers on the conductivity and tensile properties of Polyetheretherketone composites. Polym. Compos. 39, E807 (2018) O. Meincke, D. Kaempfer, H. Weickmann, C. Friedrich, M. Vathauer, H. Warth, Mechanical properties and electrical conductivity of carbon-nanotube filled Polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymer (Guildf) 45(739), 739–748 (2004) H. Yang, J. Gong, X. Wen, J. Xue, Q. Chen, Z. Jiang, N. Tian, T. Tang, Effect of carbon black on improving thermal stability, flame Retardancy and electrical conductivity of polypropylene/carbon fiber composites. Compos. Sci. Technol. 113, 31 (2015) V.P. Veedu, A. Cao, X. Li, K. Ma, C. Soldano, S. Kar, P.M. Ajayan, M.N. Ghasemi-Nejhad, Multifunctional composites using reinforced laminae with carbon-nanotube forests. Nat. Mater. 5, 457 (2006) E. Bekyarova, E.T. Thostenson, A. Yu, H. Kim, J. Gao, J. Tang, H.T. Hahn, T.W. Chou, M.E. Itkis, R.C. Haddon, Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites. Langmuir 23, 3970 (2007) Y. Li, H. Zhang, Z. Huang, E. Bilotti, T. Peijs, Graphite Nanoplatelet modified epoxy resin for carbon fibre reinforced plastics with enhanced properties. J. Nanomater. 2017, 1–10 (2017) Y. Lan, H. Liu, X. Cao, S. Zhao, K. Dai, X. Yan, G. Zheng, C. Liu, C. Shen, Z. Guo, Electrically conductive thermoplastic polyurethane/polypropylene Nanocomposites with selectively distributed Graphene. Polymer (Guildf) 97(11), 11–19 (2016) W. Lee, J.U. Lee, H.J. Cha, J.H. Byun, Partially reduced Graphene oxide as a multi-functional sizing agent for carbon fiber composites by electrophoretic deposition. RSC Adv. 3, 25609 (2013) L.Q. Cortes, S. Racagel, A. Lonjon, E. Dantras, C. Lacabanne, Electrically conductive carbon fiber / PEKK / silver nanowires multifunctional composites. Compos. Sci. Technol. 137, 159 (2016) J. Li, P.S. Wong, J.K. Kim, Hybrid Nanocomposites containing carbon nanotubes and graphite Nanoplatelets. Mater. Sci. Eng. A 483–484, 660 (2008) Y.J. Kwon, Y. Kim, H. Jeon, S. Cho, W. Lee, J.U. Lee, Graphene/carbon nanotube hybrid as a multi-functional interfacial reinforcement for carbon fiber-reinforced composites. Compos. Part B Eng. 122, 23 (2017) C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer Graphene. Science (80- ) 321, 385 (2008) Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and Graphene oxide: Synthesis, properties, and applications. Adv. Mater. 22, 3906 (2010) A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer Graphene. Nano. Lett. 8, 902 (2008) R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, The role of Graphene for electrochemical energy storage. Nat. Mater. 14, 271 (2015) E. Kandare, A.A. Khatibi, S. Yoo, R. Wang, J. Ma, P. Olivier, N. Gleizes, C.H. Wang, Improving the through-thickness thermal and electrical conductivity of carbon fibre/epoxy laminates by exploiting synergy between Graphene and silver Nano-inclusions. Compos. Part A Appl. Sci. Manuf. 69, 72 (2015) S.M. Notley, Highly concentrated aqueous suspensions of Graphene through ultrasonic exfoliation with continuous surfactant addition. Langmuir 28, 14110 (2012) U. Khan, A. O’Neill, M. Lotya, S. De, J.N. Coleman, High-concentration solvent exfoliation of Graphene. Small 6, 864 (2010) F. An, C. Lu, Y. Li, J. Guo, X. Lu, H. Lu, S. He, Y. Yang, Preparation and characterization of carbon nanotube-hybridized carbon fiber to reinforce epoxy composite. Mater. Des. 33, 197 (2012) F. Hussain, M. Hojjati, M. Okamoto, R.E. Gorga, Review article: Polymer-matrix Nanocomposites, processing, manufacturing, and application: An overview. J. Thermoplast. Compos. Mater. 40, 1511 (2006) V. Kumar, S. Sharma, A. Pathak, B.P. Singh, S.R. Dhakate, T. Yokozeki, T. Okada, T. Ogasawara, Interleaved MWCNT Buckypaper between CFRP laminates to improve through-thickness electrical conductivity and reducing lightning strike damage. Compos. Struct. 210, 581 (2019) S.S.A. Kumar, M.N. Uddin, M.M. Rahman, R. Asmatulu, Introducing Graphene thin films into carbon fiber composite structures for lightning strike protection. Polym. Compos. 40, E517 (2019) H. Zhang, Y. Liu, M. Kuwata, E. Bilotti, T. Peijs, Improved fracture toughness and integrated damage sensing capability by spray coated CNTs on carbon fibre Prepreg. Compos. Part A Appl. Sci. Manuf. 70, 102 (2015) Y. Li, H. Zhang, Y. Liu, H. Wang, Z. Huang, T. Peijs, E. Bilotti, Synergistic effects of spray-coated hybrid carbon nanoparticles for enhanced electrical and thermal surface conductivity of CFRP laminates. Compos. Part A Appl. Sci. Manuf. 105, 9 (2018) F.N. Cogswell, F. Neil, Platen Pressing of Carbon Fibre/PEEK Laminates, in Thermoplastic Aromatic Polymer Composites Materials (Butterworth Heinemann, Oxford, 1992), p. 249 M. Lotya, P.J. King, U. Khan, S. De, J.N. Coleman, High-concentration, surfactant-stabilized Graphene dispersions. ACS Nano. 4, 3155 (2010) V. Chabot, B. Kim, B. Sloper, C. Tzoganakis, A. Yu, High yield production and purification of few layer Graphene by gum Arabic assisted physical sonication. Sci. Rep. 3, 1378 (2013) M. Lotya, Y. Hernandez, P.J. King, R.J. Smith, V. Nicolosi, L.S. Karlsson, F.M. Blighe, S. De, W. Zhiming, I.T. McGovern, G.S. Duesberg, J.N. Coleman, Liquid phase production of Graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 131, 3611 (2009) A.S. Wajid, S. Das, F. Irin, H.S.T. Ahmed, J.L. Shelburne, D. Parviz, R.J. Fullerton, A.F. Jankowski, R.C. Hedden, M.J. Green, Polymer-stabilized Graphene dispersions at high concentrations in organic solvents for composite production. Carbon N Y 50, 526 (2012) A.F. Stalder, T. Melchior, M. Müller, D. Sage, T. Blu, M. Unser, Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops. Colloids Surfaces A Physicochem. Eng. Asp. 364, 72 (2010) Signatone, Signatone Four Point Probe Part Numbers SP4 (2018) M.M. Lucchese, F. Stavale, E.H.M. Ferreira, C. Vilani, M.V.O. Moutinho, R.B. Capaz, C.A. Achete, A. Jorio, Quantifying ion-induced defects and Raman relaxation length in Graphene. Carbon N Y 48, 1592 (2010) M.B. Vázquez-Santos, E. Geissler, K. László, J.N. Rouzaud, A. Martínez-Alonso, J.M.D. Tascón, Comparative XRD, Raman, and TEM study on graphitization of PBO-derived carbon fibers. J. Phys. Chem. C 116, 257 (2012) I. Childres, L.A. Jauregui, W. Park, H. Caoa, Y.P. Chena, in New Developments in Photon and Materials Research. Raman spectroscopy of Graphene and related materials (2013), pp. 403–418 M. Acik, Y.J. Chabal, Nature of Graphene edges: A review. Jpn. J. Appl. Phys. 50, 070101 (2011) R. Narayan, J. Lim, T. Jeon, D.J. Li, S.O. Kim, Perylene Tetracarboxylate surfactant assisted liquid phase exfoliation of graphite into Graphene Nanosheets with facile re-Dispersibility in aqueous/organic polar solvents. Carbon N Y 119, 555 (2017) G. Yang, L. Li, W.B. Lee, M.C. Ng, Structure of Graphene and its disorders: A review. Sci. Technol. Adv. Mater. 19, 613 (2018) B. Ma, R.D. Rodriguez, A. Ruban, S. Pavlov, E. Sheremet, The correlation between electrical conductivity and second-order Raman modes of laser-reduced Graphene oxide. Phys. Chem. Chem. Phys. 21, 10125 (2019) H. Lu, Y. Yao, W.M. Huang, D. Hui, Noncovalently functionalized carbon fiber by grafted self-assembled Graphene oxide and the synergistic effect on polymeric shape memory Nanocomposites. Compos. Part B Eng. 67, 290 (2014) N.U. Saidin, K.K. Ying, C.T. Foo, R. Hazan, M.E. Mahmoud, Direct exfoliation of graphite and its Raman spectroscopic study. Mater. Today. Proc. 7, 798 (2019) A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of Graphene. Nat. Nanotechnol. 8, 235 (2013) A.A. Dubale, W.-N. Su, B. Andebet, G. Tamirat, C.-J. Pan, B.A. Aragaw, H.-M. Chen, C.-H. Chen, B.-J. Hwang, The Synergetic Effect of Graphene on Cu 2 O Nanowire Arrays as a Highly Efficient Hydrogen Evolution Photocathode in Water Splitting † (2014) Y. Hao, Y. Wang, L. Wang, Z. Ni, Z. Wang, R. Wang, C.K. Koo, Z. Shen, J.T.L. Thong, Probing layer number and stacking order of few-layer Graphene by Raman spectroscopy. Small 6, 195 (2010) A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman Spectrum of Graphene and Graphene layers. Phys. Rev. Lett. 97, 1 (2006) S. Gayathri, P. Jayabal, M. Kottaisamy, V. Ramakrishnan, Synthesis of few layer Graphene by direct exfoliation of graphite and a Raman spectroscopic study. AIP Adv. 4, 027116 (2014) A.C. Ferrari, Raman spectroscopy of Graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47 (2007) H. Bukowska, F. Meinerzhagen, S. Akcöltekin, O. Ochedowski, M. Neubert, V. Buck, M. Schleberger, Raman spectra of Graphene exfoliated on insulating crystalline substrates. New J. Phys. 13, 063018 (2011) Y. Liu, Z. Liu, W.S. Lew, Q.J. Wang, Temperature dependence of the electrical transport properties in few-layer Graphene interconnects. Nanoscale Res. Lett. 8, 1 (2013) N.A. Mohd Radzuan, A.B. Sulong, J. Sahari, A review of electrical conductivity models for conductive polymer composite. Int. J. Hydrogen Energy 42, 9262 (2017) Y. Wang, J.W. Shan, G.J. Weng, Percolation threshold and electrical conductivity of Graphene-based Nanocomposites with filler agglomeration and interfacial tunneling. J. Appl. Phys. 118, 065101 (2015) B. Zhang, V.R. Patlolla, D. Chiao, D.K. Kalla, H. Misak, R. Asmatulu, Galvanic corrosion of Al/cu meshes with carbon fibers and Graphene and ITO-based Nanocomposite coatings as alternative approaches for lightning strikes. Int. J. Adv. Manuf. Technol. 67, 1317 (2013) D. Wei, S. Chen, Q. Liu, Review of fluorescence suppression techniques in Raman spectroscopy. Appl. Spectrosc. Rev. 50, 387 (2015) G. Benstetter, A. Hofer, D. Liu, W. Frammelsberger, M. Lanza, in Conductive Atomic Force Microscopy: Applications in Nanomaterials, ed. by M. Lanza. Conductive atomic force microscopy (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2017) R. Taherian, Experimental and analytical model for the electrical conductivity of polymer-based Nanocomposites. Compos. Sci. Technol. 123, 17 (2016) I.C. Finegan, G.G. Tibbetts, Electrical conductivity of vapor-grown carbon fiber/thermoplastic composites. Mater. Res. Soc. 16, 1668 (2001) W. Thongruang, R.J. Spontak, C.M. Balik, Correlated electrical conductivity and mechanical property analysis of high-density polyethylene filled with graphite and carbon fiber. Polymer (Guildf) 43(2279), 2279–2286 (2002) S. Kamiyama, Y. Hirano, T. Okada, T. Ogasawara, Lightning strike damage behavior of carbon fiber reinforced epoxy, Bismaleimide, and Polyetheretherketone composites. Compos. Sci. Technol. 161, 107 (2018)