Degradation of Azo Dye Acid Red 88 by Gas Phase Dielectric Barrier Discharges
Tóm tắt
The degradation of an azo dye, acid red 88 (AR88) in aqueous solutions by a gas-phase dielectric barrier discharge (DBD) system was investigated. The reactive species generated from the DBD system such as OH• radical, ozone and hydrogen peroxide were measured. The effects of various parameters such as gas flow rate, initial pH, input power, initial concentration of AR88 and the gas source on the degradation of AR88 were studied. The results show that OH• radical was the major reactive species generated when 100% relative humidity (RH) air was used. An aqueous solution of 25 mg L−1 AR88 was 96.3% degraded in 5 min treatment, and 68% of the initial total organic carbon was removed in 90 min treatment with 100% RH air at 60 W input power and 7 L min−1 gas flow rate. The degradation kinetics of AR88 followed a pseudo-first-order reaction and was dependent on the input power, gas flow rate, initial AR88 concentration and initial pH.
Tài liệu tham khảo
Young L, Yu J (1997) Water Res 31:1187–1193
Chung KT, Fulk GE, Andres AW (1981) Appl Environ Microbiol 42:641–648
Golka K, Kopps S, Myslak ZW (2004) Toxicol Lett 151:203–210
Bhaskar M, Gnanamani A, Ganeshjeevan RJ, Chandrasekar R, Sadulla S, Radhakrishnan G (2003) J Chromatogr A 1018:117–123
Dai S, Song W, Li T, Zhuang Y (1996) Adv Environ Sci 4:1–9
Dai S, Zhuang Y, Chen Y, Chen L (1995) Environ Chem 14:354–367
Konstantinou IK, Albanis TA (2004) Appl Catal B Environ 49(1):1–14
Daneshvar N, Salari D, Khataee AR (2003) J Photochem Photobiol A Chem 157:111–116
Domínguez JR, Beltrán J, Rodríguez O (2005) Catal Today 101:389–395
Hu C, Yu JC, Hao ZP, Wong PK (2003) Appl Catal B Environ 42(1):47–55
Zhang RB, Zhang C, Cheng XX, Wang LM, Wu Y, Guan ZC (2007) J Hazard Mater 142:105–110
Sun B, Sato M, Clements JS (2000) Environ Sci Technol 34:509–513
Lukes P, Locke BR (2005) J Phys D Appl Phys 38:4074–4081
Sharma AK, Josephson GB, Camaioni DM, Goheen SC (2000) Environ Sci Technol 34:2267–2272
Johnson DC, Shamamian VA, Callahan JH, Denes FS, Manolache SO, Dandy AS (2003) Environ Sci Technol 37:4804–4810
Locke BR, Sato M, Sunka P, Hoffmann MR, Chang JS (2006) Ind Eng Chem Res 45:882–905
Simek M, Clupek M (2002) J Phys D Appl Phys 35:1171–1175
Kogelschatz U (2003) Plasma Chem Plasma Process 23(1):1–46
Weast R C, Astle MJ, Beyer W H (1985) Handbook of chemistry and physics. CRC Press, Inc, Boca Raton
Haag WR, Yao CC (1992) Environ Sci Technol 26:1005–1013
Yao CC, Haag WR (1991) Water Res 25:761–773
Shin DN, Park CW, Hahn JW (2000) Bull Korean Chem Soc 21:228–232
Ono R, Oda T (2003) J Appl Phys 93:5876–5882
Tochikubo F, Uchida S, Watanabe T (2004) J Appl Phys Part 1 43:315–320
Ono R, Oda T (2000) IEEE Trans Ind Appl 36:82–86
Ono R, Oda T (2002) J Electrostat 55:333–342
Kornev J, Yavorovsky N, Preis S, Khaskelberg M, Isaev U, Chen BN (2006) Ozone Sci Eng 28:207–215
Chao T, Jin FP, Jing FL, Jiang GB, Hong Z (2004) Anal Chem Acta 527:73–80
Sellers RM (1990) Analyst 105:950–954
Bader H, Hoigne J (1981) Water Res 15:449–456
Lukes P, Clupek M, Babicky V, Janda V, Sunka P (2005) J Phys D Appl Phys 38:409–416
Xue J, Chen L, Wang HL (2008) Chem Eng J 138:120–127
Muthukumar M, Sargunamani D, Selvakumar N, Venkata Rao J (2004) Dye Pigment 63:127–134
Lopez A, Benbelkacem H, Pic JS, Debellefontaine H (2004) Environ Technol 25:311–321
Padmaja S, Madison SA (1999) J Phys Org Chem 12:221–226
Mok YS, Jo JO, Lee HJ, Ahn HT, Kim JT (2007) Plasma Chem Plasma Process 27:51–64
Du Ch M, Sun YW, Zhuang XF (2008) Plasma Chem Plasma Process 28:523–533
Hoigne J, Bader H (1976) Water Res 10:376–386
Gao JZ, Pu LM, Yang W (2004) Plasma Process Polym 1(2):171–176
Chu W, Ma CW (2000) Water Res 34:3153–3160
Grabowski LR, van Veldhuizen EM, Pemen AJM, Rutgers WR (2007) Plasma Sources Sci Technol 16(2):226–232
Magureanu M, Piroi D, Gherendi F, Mandache NB, Parvulescu V (2008) Plasma Chem Plasma Process 28:677–688
Malik MA, Rehman U, Ghaffar A, Ahmed K (2002) Plasma Sources Sci Technol 11(3):236–240