Evolution of the electronic properties of small Nin− (n=1–100) clusters by photoelectron spectroscopy

Journal of Chemical Physics - Tập 117 Số 21 - Trang 9758-9765 - 2002
Shurong Liu1,2, Hua‐Jin Zhai1,2, Lai-Sheng Wang1,2
1Department of Physics, Washington State University, Richland, Washington 99352
2and W. R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, MS K8-88, Richland, Washington 99352

Tóm tắt

Photoelectron spectra of size-selected and relatively cold Nin− (n=1–100) clusters were obtained at three detachment photon energies; 355, 266, and 193 nm. The evolution of the electronic structure of Nin− clusters from molecular to bulklike behavior was systematically investigated. Well-resolved threshold peaks were observed for small Nin− clusters (n⩽9), beyond which a single broadband was observed due to the high electronic density of states at large cluster sizes. This spectral change coincides with a dramatic decrease of the magnetic moment in this size range. In addition, narrow and well-resolved spectral features were observed around n=13 and 55, consistent with high symmetry icosahedral structures proposed for these clusters. A sharp threshold peak was observed in the spectra of Ni19− and Ni23−, also evident of more symmetric cluster structures. The spectra of Ni3− measured at various photon energies suggested the existence of two isomers. The electron affinities of the Nin clusters were observed to follow the prediction of a metallic droplet model at large cluster sizes above n=10 and extrapolate to the bulk work function of Ni at infinite size.

Từ khóa


Tài liệu tham khảo

1991, J. Chem. Phys., 94, 1882, 10.1063/1.459910

1994, J. Chem. Phys., 100, 7206, 10.1063/1.466868

1995, J. Chem. Phys., 102, 7377, 10.1063/1.469050

1995, Z. Phys. D: At., Mol. Clusters, 33, 59, 10.1007/BF01437094

1997, J. Chem. Phys., 107, 1861, 10.1063/1.474536

1998, J. Chem. Phys., 109, 10207, 10.1063/1.477715

2000, J. Chem. Phys., 112, 3384, 10.1063/1.480920

2000, J. Chem. Phys., 112, 3394, 10.1063/1.480499

2001, J. Chem. Phys., 114, 2228, 10.1063/1.1338975

2001, J. Chem. Phys., 115, 4125, 10.1063/1.1389838

1994, Chem. Phys. Lett., 217, 349, 10.1016/0009-2614(93)E1474-U

1994, Science, 265, 1682, 10.1126/science.265.5179.1682

1997, J. Magn. Magn. Mater., 168, 64, 10.1016/S0304-8853(96)00694-4

1996, Phys. Rev. Lett., 76, 1441, 10.1103/PhysRevLett.76.1441

2002, J. Chem. Phys., 116, 9703, 10.1063/1.1477175

1990, J. Chem. Phys., 93, 94, 10.1063/1.459467

1993, Z. Phys. D: At., Mol. Clusters, 26, 110

2000, Surf. Sci., 454, 310

1992, J. Chem. Phys., 96, 1530

1996, J. Chem. Phys., 105, 9686, 10.1063/1.472798

1998, J. Chem. Phys., 108, 729, 10.1063/1.475433

2002, J. Chem. Phys., 117, 132, 10.1063/1.1481855

1991, J. Chem. Phys., 94, 7376, 10.1063/1.460169

1992, J. Chem. Phys., 97, 3386, 10.1063/1.462975

1996, J. Chem. Phys., 105, 572, 10.1063/1.471910

1996, Phys. Rev. B, 54, 5961, 10.1103/PhysRevB.54.5961

2002, Chem. Phys. Lett., 359, 428, 10.1016/S0009-2614(02)00733-9

1995, Phys. Rev. B, 52, 11650, 10.1103/PhysRevB.52.R11650

1997, Chem. Phys. Lett., 281, 401, 10.1016/S0009-2614(97)01269-4

2001, Chem. Phys. Lett., 336, 467, 10.1016/S0009-2614(01)00152-X

2001, Phys. Rev. B, 64, 235419, 10.1103/PhysRevB.64.235419

1998, J. Phys. Chem. A, 102, 1748, 10.1021/jp980262b

1997, Phys. Rev. B, 55, 13279, 10.1103/PhysRevB.55.13279

1998, Phys. Rev. B, 57, 12469, 10.1103/PhysRevB.57.12469

1996, J. Chem. Phys., 104, 992, 10.1063/1.470823

1998, Phys. Rev. B, 57, 10069, 10.1103/PhysRevB.57.10069

1996, Phys. Rev. B, 53, 10382, 10.1103/PhysRevB.53.10382

1997, Chem. Phys. Lett., 271, 133, 10.1016/S0009-2614(97)00420-X

1999, Int. J. Quantum Chem., 75, 847, 10.1002/(SICI)1097-461X(1999)75:4/5<847::AID-QUA50>3.0.CO;2-Y

2000, Int. J. Quantum Chem., 80, 567, 10.1002/1097-461X(2000)80:4/5<567::AID-QUA5>3.0.CO;2-D

1996, J. Phys. Chem., 100, 16874, 10.1021/jp9608281

1996, Phys. Rev. B, 54, 26, 10.1103/PhysRevB.54.26

2001, J. Appl. Phys., 89, 7308, 10.1063/1.1356036

2000, J. Phys. Chem. A, 104, 2746, 10.1021/jp992923q

1996, Phys. Rev. Lett., 76, 4975, 10.1103/PhysRevLett.76.4975

1998, Z. Phys. Chem. (Munich), 203, 45, 10.1524/zpch.1998.203.Part_1_2.045

1993, J. Chem. Phys., 99, 8542, 10.1063/1.465577

1988, J. Chem. Phys., 89, 4514, 10.1063/1.454791

2000, Chem. Rev., 100, 637, 10.1021/cr980391o

1995, J. Chem. Phys., 102, 9480, 10.1063/1.468817

1999, Phys. Rev. B, 60, 11297, 10.1103/PhysRevB.60.R11297

1998, Phys. Rev. A, 58, 2051, 10.1103/PhysRevA.58.2051

1998, Phys. Rev. Lett., 81, 1909, 10.1103/PhysRevLett.81.1909

2002, Phys. Rev. B, 65, 153404, 10.1103/PhysRevB.65.153404

1988, Chem. Phys. Lett., 152, 347, 10.1016/0009-2614(88)80104-0

2001, Chem. Phys. Lett., 337, 255, 10.1016/S0009-2614(01)00198-1

2001, J. Chem. Phys., 115, 5404, 10.1063/1.1394944

1996, Phys. Rev. Lett., 76, 212, 10.1103/PhysRevLett.76.212

2001, Phys. Rev. B, 64, 153402, 10.1103/PhysRevB.64.153402

2001, J. Chem. Phys., 115, 5957, 10.1063/1.1398578

1991, Phys. Rev. Lett., 67, 742, 10.1103/PhysRevLett.67.742

2002, Phys. Rev. B, 65, 113401, 10.1103/PhysRevB.65.113401

1981, Phys. Rev. Lett., 46, 749, 10.1103/PhysRevLett.46.749