Angiogenic potential of endothelial progenitor cells and embryonic stem cells

Publiverse Online S.R.L - Tập 3 - Trang 1-15 - 2011
Peter C Rae1,2, Richard DW Kelly2,3, Stuart Egginton1, Justin C St John2,3
1Centre for Cardiovascular Sciences, College of Medical & Dental Sciences, University of Birmingham, UK
2Clinical Sciences Research Institute, Warwick Medical School, University of Warwick, UK
3Centre for Reproduction & Development, Monash Institute of Medical Research, Clayton, Australia

Tóm tắt

Endothelial progenitor cells (EPCs) are implicated in a range of pathological conditions, suggesting a natural therapeutic role for EPCs in angiogenesis. However, current angiogenic therapies involving EPC transplantation are inefficient due to rejection of donor EPCs. One solution is to derive an expanded population of EPCs from stem cells in vitro, to be re-introduced as a therapeutic transplant. To demonstrate the therapeutic potential of EPCs we performed in vitro transplantation of EPCs into endothelial cell (EC) tubules using a gel-based tubule formation assay. We also described the production of highly angiogenic EPC-comparable cells from pluripotent embryonic stem cells (ESCs) by direct differentiation using EC-conditioned medium (ECCM). The effect on tubule complexity and longevity varied with transplantation quantity: significant effects were observed when tubules were transplanted with a quantity of EPCs equivalent to 50% of the number of ECs originally seeded on to the assay gel but not with 10% EPC transplantation. Gene expression of the endothelial markers VEGFR2, VE-cadherin and CD31, determined by qPCR, also changed dynamically during transplantation. ECCM-treated ESC-derived progenitor cells exhibited angiogenic potential, demonstrated by in vitro tubule formation, and endothelial-specific gene expression equivalent to natural EPCs. We concluded the effect of EPCs is cumulative and beneficial, relying on upregulation of the angiogenic activity of transplanted cells combined with an increase in proliferative cell number to produce significant effects upon transplantation. Furthermore, EPCs derived from ESCs may be developed for use as a rapidly-expandable alternative for angiogenic transplantation therapy.

Tài liệu tham khảo

Adams RH, Alitalo K: Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol. 2007, 8: 464-478. 10.1038/nrm2183. Sirker AA, Astroulakis ZMJ, Hill JM: Vascular progenitor cells and translational research: the role of endothelial and smooth muscle progenitor cells in endogenous arterial remodelling in the adult. Clin Sci. 2009, 116: 283-299. 10.1042/CS20080001. Risau W: Mechanisms of angiogenesis. Nature. 1997, 386: 671-674. Paleolog E: It's all in the blood: circulating endothelial progenitor cells link synovial vascularity with cardiovascular mortality in rheumatoid arthritis?. Arthritis Res Ther. 2005, 7: 270-272. 10.1186/ar1850. Hudlicka O, Brown M, Egginton S: Angiogenesis in skeletal and cardiac muscle. Physiol Rev. 1992, 72: 369-417. Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A, Fujita Y, Kothari S, Mohle R, Sauvage LR, Moore MA, Storb RF, Hammond WP: Evidence for circulating bone marrow-derived endothelial cells. Blood. 1998, 92: 362-367. Burri PH, Djonov V: Intussusceptive angiogenesis--the alternative to capillary sprouting. Mol Aspects Med. 2002, 23: S1-27. Hristov M, Weber C: Endothelial progenitor cells: characterization, pathophysiology, and possible clinical relevance. J Cell Mol Med. 2004, 8: 498-508. 10.1111/j.1582-4934.2004.tb00474.x. Iwami Y, Masuda H, Asahara T: Endothelial progenitor cells: past, state of the art, and future. J Cell Mol Med. 2004, 8: 488-497. 10.1111/j.1582-4934.2004.tb00473.x. Zhang L, Yang R, Han ZC: Transplantation of umbilical cord blood-derived endothelial progenitor cells: a promising method of therapeutic revascularisation. Eur J Haematol. 2006, 76: 1-8. 10.1111/j.1600-0609.2005.00579.x. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM: Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997, 275: 964-967. 10.1126/science.275.5302.964. Michaud SE, Dussault S, Haddad P, Groleau J, Rivard A: Circulating endothelial progenitor cells from healthy smokers exhibit impaired functional activities. Atherosclerosis. 2006, 187: 423-432. 10.1016/j.atherosclerosis.2005.10.009. Ding DC, Shyu WC, Lin SZ, Li H: The role of endothelial progenitor cells in ischemic cerebral and heart diseases. Cell Transplant. 2007, 16: 273-284. Kawamoto A, Asahara T: Role of progenitor endothelial cells in cardiovascular disease and upcoming therapies. Catheterization and cardiovascular interventions: official journal of the Society for Cardiac Angiography & Interventions. 2007, 70: 477-484. 10.1002/ccd.21292. Milkiewicz M, Hudlicka O, Shiner R, Egginton S, Brown MD: Vascular endothelial growth factor mRNA and protein do not change in parallel during non-inflammatory skeletal muscle ischaemia in rat. The Journal of Physiology. 2006, 577: 671-678. 10.1113/jphysiol.2006.113357. Williams JL, Cartland D, Hussain A, Egginton S: A differential role for nitric oxide in two forms of physiological angiogenesis in mouse. The Journal of Physiology. 2006, 570: 445-454. Garmy-Susini B, Varner JA: Circulating endothelial progenitor cells. Br J Cancer. 2005, 93: 855-858. 10.1038/sj.bjc.6602808. Shantsila E, Watson T, Lip G: Endothelial Progenitor Cells in Cardiovascular Disorders. Journal of the American College of Cardiology. 2007, 49: 741-752. 10.1016/j.jacc.2006.09.050. Heng BC, Liu H, Rufaihah AJ, Cao T: Human embryonic stem cell (hES) colonies display a higher degree of spontaneous differentiation when passaged at lower densities. In Vitro Cell Dev Biol Anim. 2006, 42: 54-57. 10.1290/0510071.1. Hombach-Klonisch S, Panigrahi S, Rashedi I, Seifert A, Alberti E, Pocar P, Kurpisz M, Schulze-Osthoff K, Mackiewicz A, Los M: Adult stem cells and their trans-differentiation potential-perspectives and therapeutic applications. J Mol Med. 2008 Vittet D, Prandini MH, Berthier R, Schweitzer A, Martin-Sisteron H, Uzan G, Dejana E: Embryonic stem cells differentiate in vitro to endothelial cells through successive maturation steps. Blood. 1996, 88: 3424-3431. Sun X, Cheng L, Duan H, Lu G: Effects of an endothelial cell-conditioned medium on the hematopoietic and endothelial differentiation of embryonic stem cells. Cell Biol Int. 2009, 33: 1201-1205. 10.1016/j.cellbi.2009.08.005. Kim GD, Kim GJ, Seok JH, Chung H-M, Chee K-M, Rhee G-S: Differentiation of endothelial cells derived from mouse embryoid bodies: a possible in vitro vasculogenesis model. Toxicology Letters. 2008, 180: 166-173. 10.1016/j.toxlet.2008.05.023. Gallagher KA, Liu Z-J, Xiao M, Chen H, Goldstein LJ, Buerk DG, Nedeau A, Thom SR, Velazquez OC: Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1 alpha. J Clin Invest. 2007, 117: 1249-1259. 10.1172/JCI29710. Janic B, Guo AM, Iskander ASM, Varma NRS, Scicli AG, Arbab AS: Human cord blood-derived AC133+ progenitor cells preserve endothelial progenitor characteristics after long term in vitro expansion. PLoS ONE. 2010, 5: e9173-10.1371/journal.pone.0009173. Kwon S-M, Eguchi M, Wada M, Iwami Y, Hozumi K, Iwaguro H, Masuda H, Kawamoto A, Asahara T: Specific Jagged-1 signal from bone marrow microenvironment is required for endothelial progenitor cell development for neovascularization. Circulation. 2008, 118: 157-165. 10.1161/CIRCULATIONAHA.107.754978. Arnaoutova I, George J, Kleinman HK, Benton G: The endothelial cell tube formation assay on basement membrane turns 20: state of the science and the art. Angiogenesis. 2009, 12: 267-274. 10.1007/s10456-009-9146-4. Mukai N, Akahori T, Komaki M, Li Q, Kanayasu-Toyoda T, Ishii-Watabe A, Kobayashi A, Yamaguchi T, Abe M, Amagasa T, Morita I: A comparison of the tube forming potentials of early and late endothelial progenitor cells. Exp Cell Res. 2008, 314: 430-440. 10.1016/j.yexcr.2007.11.016. Keller GM: In vitro differentiation of embryonic stem cells. Curr Opin Cell Biol. 1995, 7: 862-869. 10.1016/0955-0674(95)80071-9. Boettcher M, Gloe T, de Wit C: Semiautomatic Quantification of Angiogenesis. J Surg Res. 2009 Viñals F, Pouysségur J: Confluence of vascular endothelial cells induces cell cycle exit by inhibiting p42/p44 mitogen-activated protein kinase activity. Molecular and Cellular Biology. 1999, 19: 2763-2772. Grazia Lampugnani M, Zanetti A, Corada M, Takahashi T, Balconi G, Breviario F, Orsenigo F, Cattelino A, Kemler R, Daniel TO, Dejana E: Contact inhibition of VEGF-induced proliferation requires vascular endothelial cadherin, beta-catenin, and the phosphatase DEP-1/CD148. The Journal of Cell Biology. 2003, 161: 793-804. 10.1083/jcb.200209019. Ashton AW, Yokota R, John G, Zhao S, Suadicani SO, Spray DC, Ware JA: Inhibition of endothelial cell migration, intercellular communication, and vascular tube formation by thromboxane A(2). J Biol Chem. 1999, 274: 35562-35570. 10.1074/jbc.274.50.35562. Dimmeler S, Zeiher AM: Vascular repair by circulating endothelial progenitor cells: the missing link in atherosclerosis?. J Mol Med. 2004, 82: 671-677. 10.1007/s00109-004-0580-x. Op den Buijs J, Musters M, Verrips T, Post JA, Braam B, van Riel N: Mathematical modeling of vascular endothelial layer maintenance: the role of endothelial cell division, progenitor cell homing, and telomere shortening. Am J Physiol Heart Circ Physiol. 2004, 287: H2651-2658. 10.1152/ajpheart.00332.2004. Dimmeler S, Vasa-Nicotera M: Aging of progenitor cells: limitation for regenerative capacity?. Journal of the American College of Cardiology. 2003, 42: 2081-2082. 10.1016/j.jacc.2003.09.016. Hattori K, Heissig B, Tashiro K, Honjo T, Tateno M, Shieh JH, Hackett NR, Quitoriano MS, Crystal RG, Rafii S, Moore MA: Plasma elevation of stromal cell-derived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells. Blood. 2001, 97: 3354-3360. 10.1182/blood.V97.11.3354. Powell TM, Paul JD, Hill JM, Thompson M, Benjamin M, Rodrigo M, McCoy JP, Read EJ, Khuu HM, Leitman SF, Finkel T, Cannon RO: Granulocyte colony-stimulating factor mobilizes functional endothelial progenitor cells in patients with coronary artery disease. Arterioscler Thromb Vasc Biol. 2005, 25: 296-301. Breier G, Breviario F, Caveda L, Berthier R, Schnürch H, Gotsch U, Vestweber D, Risau W, Dejana E: Molecular cloning and expression of murine vascular endothelial-cadherin in early stage development of cardiovascular system. Blood. 1996, 87: 630-641. Zhao H-P, Lu G-X, Wang Q-R: Bone marrow endothelial cell-conditioned medium promotes hematopoietic differentiation of mouse embryonic stem cells. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2003, 11: 109-114. Kubo A, Chen V, Kennedy M, Zahradka E, Daley GQ, Keller G: The homeobox gene HEX regulates proliferation and differentiation of hemangioblasts and endothelial cells during ES cell differentiation. Blood. 2005, 105: 4590-4597. 10.1182/blood-2004-10-4137. Carlevaro MF, Cermelli S, Cancedda R, Descalzi Cancedda F: Vascular endothelial growth factor (VEGF) in cartilage neovascularization and chondrocyte differentiation: auto-paracrine role during endochondral bone formation. Journal of Cell Science. 2000, 113 (Pt 1): 59-69. Kono T, Kubo H, Shimazu C, Ueda Y, Takahashi M, Yanagi K, Fujita N, Tsuruo T, Wada H, Yamashita JK: Differentiation of lymphatic endothelial cells from embryonic stem cells on OP9 stromal cells. Arteriosclerosis, Thrombosis, and Vascular Biology. 2006, 26: 2070-2076. 10.1161/01.ATV.0000225770.57219.b0. Kado M, Lee J-K, Hidaka K, Miwa K, Murohara T, Kasai K, Saga S, Morisaki T, Ueda Y, Kodama I: Paracrine factors of vascular endothelial cells facilitate cardiomyocyte differentiation of mouse embryonic stem cells. Biochemical and Biophysical Research Communications. 2008, 377: 413-418. 10.1016/j.bbrc.2008.09.160.