Targeting EGFR/HER2 pathways enhances the antiproliferative effect of gemcitabine in biliary tract and gallbladder carcinomas

BMC Cancer - Tập 10 - Trang 1-14 - 2010
Ymera Pignochino1, Ivana Sarotto2, Caterina Peraldo-Neia1,3, Junia Y Penachioni4, Giuliana Cavalloni1, Giorgia Migliardi1, Laura Casorzo2, Giovanna Chiorino3, Mauro Risio2, Alberto Bardelli4, Massimo Aglietta1, Francesco Leone1
1Department of Medical Oncology, University of Torino Medical School, Institute for Cancer Research and Treatment, Candiolo, Italy
2Unit of Pathology, Institute for Cancer Research and Treatment, Candiolo, Italy
3Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia Valenta", Biella, Italy
4Laboratory of Molecular Genetics, The Oncogenomics Center, University of Torino Medical School, Institute for Cancer Research and Treatment, Candiolo, Italy

Tóm tắt

Advanced biliary tract carcinomas (BTCs) have poor prognosis and limited therapeutic options. Therefore, it is crucial to combine standard therapies with molecular targeting. In this study EGFR, HER2, and their molecular transducers were analysed in terms of mutations, amplifications and over-expression in a BTC case series. Furthermore, we tested the efficacy of drugs targeting these molecules, as single agents or in combination with gemcitabine, the standard therapeutic agent against BTC. Immunohistochemistry, FISH and mutational analysis were performed on 49 BTC samples of intrahepatic (ICCs), extrahepatic (ECCs), and gallbladder (GBCs) origin. The effect on cell proliferation of different EGFR/HER2 pathway inhibitors as single agents or in combination with gemcitabine was investigated on BTC cell lines. Western blot analyses were performed to investigate molecular mechanisms of targeted drugs. EGFR is expressed in 100% of ICCs, 52.6% of ECCs, and in 38.5% of GBCs. P-MAPK and p-Akt are highly expressed in ICCs (>58% of samples), and to a lower extent in ECCs and GBCs (<46%), indicating EGFR pathway activation. HER2 is overexpressed in 10% of GBCs (with genomic amplification), and 26.3% of ECCs (half of which has genomic amplification). EGFR or its signal transducers are mutated in 26.5% of cases: 4 samples bear mutations of PI3K (8.2%), 3 cases (6.1%) in K-RAS, 4 (8.2%) in B-RAF, and 2 cases (4.1%) in PTEN, but no loss of PTEN expression is detected. EGI-1 cell line is highly sensitive to gemcitabine, TFK1 and TGBC1-TKB cell lines are responsive and HuH28 cell line is resistant. In EGI-1 cells, combination with gefitinib further increases the antiproliferative effect of gemcitabine. In TFK1 and TGBC1-TKB cells, the efficacy of gemcitabine is increased with addiction of sorafenib and everolimus. In TGBC1-TKB cells, lapatinib also has a synergic effect with gemcitabine. HuH28 becomes responsive if treated in combination with erlotinib. Moreover, HuH28 cells are sensitive to lapatinib as a single agent. Molecular mechanisms were confirmed by western blot analysis. These data demonstrate that EGFR and HER2 pathways are suitable therapeutic targets for BTCs. The combination of gemcitabine with drugs targeting these pathways gives encouraging results and further clinical studies could be warranted.

Tài liệu tham khảo

Nakeeb A, Pitt HA, Sohn TA, et al: Cholangiocarcinoma. A spectrum of intrahepatic, perihilar, and distal tumors. Ann Surg. 1996, 224: 463-473. 10.1097/00000658-199610000-00005. Malhi H, Gores GJ: Cholangiocarcinoma: modern advances in understanding a deadly old disease. J Hepatol. 2006, 45: 856-867. 10.1016/j.jhep.2006.09.001. Thongprasert S: The role of chemotherapy in cholangiocarcinoma. Ann Oncol. 2005, 16 (Suppl 2): ii93-96. 10.1093/annonc/mdi712. Valle J, Wasan H, Palmer DH, Cunningham D, Anthoney A, Maraveyas A, Madhusudan S, Iveson T, Hughes S, Pereira SP, Roughton M, Bridgewater J, ABC-02 Trial Investigators: Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med. 2010, 362 (14): 1273-81. 10.1056/NEJMoa0908721. Aaronson SA: Growth factors and cancer. Science. 1991, 254: 1146-1153. 10.1126/science.1659742. Salomon DS, Brandt R, Ciardiello F, Normanno N: Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol. 1995, 19: 183-232. 10.1016/1040-8428(94)00144-I. Yarden Y, Sliwkowski MX: Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001, 2: 127-137. 10.1038/35052073. Wells A: EGF receptor. Int J Biochem Cell Biol. 1999, 31: 637-643. 10.1016/S1357-2725(99)00015-1. De Luca A, Carotenuto A, Rachiglio A, et al: The role of the EGFR signaling in tumor microenvironment. J Cell Physiol. 2008, 214: 559-67. 10.1002/jcp.21260. Werneburg NW, Yoon JH, Higuchi H, Gores GJ: Bile acids activate EGF receptor via a TGF-alpha-dependent mechanism in human cholangiocyte cell lines. Am J Physiol Gastrointest Liver Physiol. 2003, 285: G31-6. Alpini G, Glaser SS, Ueno Y, Rodgers R, Phinizy JL, Francis H, Baiocchi L, Holcomb LA, Caligiuri A, LeSage GD: Bile acid feeding induces cholangiocyte proliferation and secretion: evidence for bile acid-regulated ductal secretion. Gastroenterology. 1999, 116: 179-86. 10.1016/S0016-5085(99)70242-8. Yoon JH, Gwak GY, Lee HS, Bronk SF, Werneburg NW, Gores GJ: Enhanced epidermal growth factor receptor activation in human cholangiocarcinoma cells. J Hepatol. 2004, 41: 808-14. 10.1016/j.jhep.2004.07.016. Leone F, Cavalloni G, Pignochino Y, et al: Somatic mutations of epidermal growth factor receptor in bile duct and gallbladder carcinoma. Clin Cancer Res. 2006, 12: 1680-1685. 10.1158/1078-0432.CCR-05-1692. Lynch TJ, Bell DW, Sordella R, et al: Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004, 350: 2129-2139. 10.1056/NEJMoa040938. Cappuzzo F, Toschi L, Finocchiaro G, Ligorio C, Santoro A: Surrogate predictive biomarkers for response to anti-EGFR agents: state of the art and challenges. Int J Biol Markers. 2007, 22 (1 Suppl 4): S10-23. Cappuzzo F, Ligorio C, Toschi L, et al: EGFR and HER2 gene copy number and response to first-line chemotherapy in patients with advanced non-small cell lung cancer (NSCLC). J Thorac Oncol. 2007, 2 (7): 676-10.1097/JTO.0b013e31812f701d. Velho S, Oliveira C, Ferreira A, et al: The prevalence of PIK3CA mutations in gastric and colon cancer. Eur J Cancer. 2005, 41: 1649-54. 10.1016/j.ejca.2005.04.022. Engelman JA, Mukohara T, Zejnullahu K, et al: Allelic dilution obscures detection of a biologically significant resistance mutation in EGFR-amplified lung cancer. J Clin Invest. 2006, 116: 2695-2706. 10.1172/JCI28656. Li J, Yen C, Liaw D, Podsypanina K, et al: PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 1997, 275: 1943-7. 10.1126/science.275.5308.1943. Kokubo Y, Gemma A, Noro R, et al: Reduction of PTEN protein and loss of epidermal growth factor receptor gene mutations in lung cancer with natural resistance to gefitinib (IRESSA). Br J Cancer. 2005, 92: 1711-1719. 10.1038/sj.bjc.6602559. She QB, Solit D, Basso A, et al: Resistance to gefitinib in PTEN-null HER-overexpressing tumor cells can overcome through restoration of PTEN function or pharmacologic modulation of constitutive phosphatidylinositol 3'-kinase/Akt pathway signaling. Clin Cancer Res. 2003, 9: 4340-4346. Philip PA, Mahoney MR, Allmer C, et al: Phase II study of erlotinib in patients with advanced biliary cancer. J Clin Oncol. 2006, 24: 3069-3074. 10.1200/JCO.2005.05.3579. Dragovich T, Huberman M, Von Hoff DD, Rowinsky EK, Nadler P, Wood D, Hamilton M, Hage G, Wolf J, Patnaik A: Erlotinib plus gemcitabine in patients withunresectable pancreatic cancer and other solid tumors: phase IB trial. Cancer Chemother Pharmacol. 2007, 60: 295-303. 10.1007/s00280-006-0389-0. Gruenberger B, Schueller J, Kaczirek K, Bergmann M, Klose W, Bischof M, Schernthaner G, Gruenberger T: Efficacy results of cetuximab plus gemcitabine-oxaliplatin (GEMOX) in patients with advanced or metastatic cholangiocarcinoma: A single centre phase II study. J Clin Oncol (Meeting Abstracts). 2008, 26: 4586- Malka D, Trarbach T, Fartoux L, et al: A multicenter, randomized phase II trial of gemcitabine and oxaliplatin (GEMOX) alone or in combination with biweekly cetuximab in the first-line treatment of advanced biliary cancer: interim analysis of the BINGO trial. J Clin Oncol. 2009, 27: 15s-10.1200/JCO.2008.21.7695. (ASCO 2009; abstract 4520) Safran H, Miner T, Resnick M, et al: Lapatinib/gemcitabine and lapatinib/gemcitabine/oxaliplatin: a phase I study for advanced pancreaticobiliary cancer. Am J Clin Oncol. 2008, 31: 140-4. 10.1097/COC.0b013e318145b9a5. El-Khoueiry AB, Rankin C, Lenz HJ, Philip P, Rivkin SE, Blanke CD: SWOG 0514: a phase II study of sorafenib (BAY 43-9006) as single agent in patients (pts) with unresectable or metastatic gallbladder cancer or cholangiocarcinomas. J Clin Oncol. 2007, 25: 18 s, (ASCO 2007; abstract 4639)- Dealis C, Bertolini F, Malavasi N, et al: A phase II trial of sorafenib (SOR) in patients (pts) with advanced cholangiocarcinoma (CC). J Clin Oncol. 2008, 26: (ASCO 2008; abstract 4590) Khan SA, Davidson BR, Goldin R, et al: British Society of Gastroenterology. Guidelines for the diagnosis and treatment of cholangiocarcinoma: consensus document. Gut. 2002, 51 (Suppl 6): VI1-9. 10.1136/gut.51.suppl_6.vi1. Sobin LH, Witteking CH: TNM classification of malignant tumours. 2002, New York: John Wiley & Sons Inc, 6 Isa T, Tomita S, Nakachi A, et al: Analysis of microsatellite instability, K-ras gene mutation and p53 protein overexpression in intrahepatic cholangiocarcinoma. Hepatogastroenterology. 2002, 49: 604-608. Boberg KM, Schrumpf E, Bergquist A, et al: Cholangiocarcinoma in primary sclerosing cholangitis: K-ras mutations and Tp53 dysfunction are implicated in the neoplastic development. J Hepatol. 2000, 32: 374-380. 10.1016/S0168-8278(00)80386-4. Kang YK, Kim WH, Lee HW, Lee HK, Kim YI: Mutation of p53 and K-ras, and loss of heterozygosity of APC in intrahepatic cholangiocarcinoma. Lab Invest. 1999, 79: 477-483. Suto T, Habano W, Sugai T, et al: Aberrations of the K-ras, p53, and APC genes in extrahepatic bile duct cancer. J Surg Oncol. 2000, 73: 158-163. 10.1002/(SICI)1096-9098(200003)73:3<158::AID-JSO9>3.0.CO;2-N. Tsuda H, Satarug S, Bhudhisawasdi V, Kihana T, Sugimura T, Hirohashi S: Cholangiocarcinomas in Japanese and Thai patients: difference in etiology and incidence of point mutation of the c-Ki-ras proto-oncogene. Mol Carcinog. 1992, 6: 266-269. 10.1002/mc.2940060408. Tannapfel A, Sommerer F, Benicke M, et al: Mutations of the BRAF gene in cholangiocarcinoma but not in hepatocellular carcinoma. Gut. 2003, 52: 706-712. 10.1136/gut.52.5.706. Kosaka T, Yatabe Y, Endoh H, Kuwano H, Takahashi T, Mitsudomi T: Mutations of the epidermal growth factor receptor gene in lung cancer: biological and clinical implications. Cancer Res. 2004, 64: 8919-8923. 10.1158/0008-5472.CAN-04-2818. Bae NC, Chae MH, Lee MH, et al: EGFR, ERBB2, and KRAS mutations in Korean non-small cell lung cancer patients. Cancer Genet Cytogenet. 2007, 173: 107-113. 10.1016/j.cancergencyto.2006.10.007. Yoshikawa D, Ojima H, Iwasaki M, et al: Clinicopathological and prognostic significance of EGFR, VEGF, and HER2 expression in cholangiocarcinoma. Br J Cancer. 2008, 98: 418-25. 10.1038/sj.bjc.6604129. Huether A, Höpfner M, Baradari V, Schuppan D, Scherübl H: Sorafenib alone or as combination therapy for growth control of cholangiocarcinoma. Biochem Pharmacol. 2007, 73: 1308-17. 10.1016/j.bcp.2006.12.031. Konecny GE, Pegram MD, Venkatesan N, Finn R, Yang G, Rahmeh M, Untch M, Rusnak DW, Spehar G, Mullin RJ, Keith BR, Gilmer TM, Berger M, Podratz KC, Slamon DJ: Activity of the dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer cells. Cancer Res. 2006, 66: 1630-9. 10.1158/0008-5472.CAN-05-1182. Komoto M, Nakata B, Nishii T, Kawajiri H, Shinto O, Amano R, Yamada N, Yashiro M, Hirakawa K: In vitro and in vivo evidence that a combination of lapatinib plus S-1 is a promising treatment for pancreatic cancer. Cancer Sci. 2010, 101: 468-73. 10.1111/j.1349-7006.2009.01405.x. LaBonte MJ, Manegold PC, Wilson PM, Fazzone W, Louie SG, Lenz HJ, Ladner RD: The dual EGFR/HER-2 tyrosine kinase inhibitor lapatinib sensitizes colon and gastric cancer cells to the irinotecan active metabolite SN-38. Int J Cancer. 2009, 125: 2957-69. 10.1002/ijc.24658. Konecny GE, Venkatesan N, Yang G, Dering J, Ginther C, Finn R, Rahmeh M, Fejzo MS, Toft D, Jiang SW, Slamon DJ, Podratz KC: Activity of lapatinib a novel HER2 and EGFR dual kinase inhibitor in human endometrial cancer cells. Br J Cancer. 2008, 98: 1076-84. 10.1038/sj.bjc.6604278. Burstein HJ, Storniolo AM, Franco S, Forster J, Stein S, Rubin S, Salazar VM, Blackwell KL: A phase II study of lapatinib monotherapy in chemotherapy-refractory HER2-positive and HER2-negative advanced or metastatic breast cancer. Annals of Oncology. 2008, 19: 1068-1074. 10.1093/annonc/mdm601. Wiedmann M, Feisthammel J, Blüthner T, Tannapfel A, Kamenz T, Kluge A, Mössner J, Caca K: Novel targeted approaches to treating biliary tract cancer: the dual epidermal growth factor receptor and ErbB-2 tyrosine kinase inhibitor NVP-AEE788 is more efficient than the epidermal growth factor receptor inhibitors gefitinib and erlotinib. Anticancer Drugs. 2006, 7: 783-95. 10.1097/01.cad.0000217433.48870.37. Xu L, Hausmann M, Dietmaier W, Kellermeier S, Pesch T, Stieber-Gunckel M, Lippert E, Klebl F, Rogler G: Expression of growth factor receptors and targeting of EGFR in cholangiocarcinoma cell lines. BMC Cancer. 2010, 18 (10): 302-10.1186/1471-2407-10-302. Yoshikawa D, Ojima H, Iwasaki M, Hiraoka N, Kosuge T, Kasai S, Hirohashi S, Shibata T: Clinicopathological and prognostic significance of EGFR, VEGF, and HER2 expression in cholangiocarcinoma. Br J Cancer. 2008, 98: 418-425. 10.1038/sj.bjc.6604129. Chung JY, Hong SM, Choi BY, et al: The expression of phospho-AKT, phospho-mTOR, and PTEN in extrahepatic cholangiocarcinoma. Clin Cancer Res. 2009, 15: 660-7. 10.1158/1078-0432.CCR-08-1084. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1471-2407/10/631/prepub