Manufacturing of Short-Chain Fructooligosaccharides: from Laboratory to Industrial Scale

Food Engineering Reviews - Tập 12 - Trang 149-172 - 2020
María José Sánchez-Martínez1, Sonia Soto-Jover1, Vera Antolinos1, Ginés Benito Martínez-Hernández1, Antonio López-Gómez1
1Food Safety and Refrigeration Engineering Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Cartagena, Spain

Tóm tắt

Short-chain fructooligosaccharides (ScFOS) are a group of linear fructose oligomers that include 1-kestose, 1-nystose and 1-β-fructofuranosylnystose. ScFOS, which naturally occur at low levels in different plant products, are of high interest as food ingredients because of their prebiotic character, organoleptic characteristics and technological properties. Two different industrial processes are used to achieve large-scale ScFOS production: inulin hydrolysis (enzymatic or chemical hydrolysis) or sucrose biotransformation by transfructosylation (enzymatic synthesis) using specific enzymes like fructosyltransferases and fructofuranosidases. Enzymatic ScFOS synthesis seems to be more advantageous than inulin hydrolysis since it is less expensive, and leads to lower molecular weight FOS. The biotechnological process described to carry out this catalysis includes the production of transfructosylation enzymes, separation, enzyme immobilisation and finally the ScFOS production and purification. Such ScFOS production processes may be conducted under submerged or solid-state fermentation under discontinuous or continuous conditions. Several methodologies with different economic/environmental costs and production yields have been described to carry out these ScFOS production stages, although industrial scale-up needs to be optimised. This review tries to address a revision about enzymatic ScFOS production methods and its scale-up to industrial levels.

Tài liệu tham khảo

Fernández-Arrojo L, Plou-Gasca FJ, Ballesteros-Olmo A, Alcalde-Galeote M, Gutiérrez-Alonso P, Fernández-Lobato M (2009) Immobilised biocatalyst based on alginate for the biotransformation of carbohydrates. Patent No WO2010103150 A1 Alvarado-Huallanco MB, Maugeri-Filho F (2010) Kinetics and modeling of fructo-oligosaccharide synthesis by immobilized fructosyltransferase from Rhodotorula sp. J Chem Technol Biotechnol 85:1654–1662 Andreescu S, Njagi J, Ispas C (2007) Nanostructured materials for enzyme immobilization and biosensors. In: Erokhin V, Ram MK, Yavuz O (eds) The new frontiers of organic and composite nanotechnology. Elsevier, New York, pp 355–394 Armenante PM, Akiti O (2019) Sterilization processes in the pharmaceutical industry. In: Ende MT, Ende DJ (eds) Chemical engineering in the pharmaceutical industry: drug product design, development, and modelling. John Wiley & Sons, Inc., Hoboken Arrizón JP, Amaya-Delgado L, González-Ávila ME, Chesini M, Baruque D, Ghiringhelli PD, Cavalitto SF, Rojas NL (2018) Fructans enzymatic hydrolisis process through the use of a B–fructofuranosidase or inulinase of the Aspergillus kawachii fungi. Mexican Patent 2016016731 A Balasubramaniem AK, Nagarajan KV, Paramasamy G (2001) Optimization of media for β–fructofuranosidase production by Aspergillus niger in submerged and solid state fermentation. Process Biochem 36:1241–1247 Bornet FRJ (1994) Undigestible sugars in food products. Am J Clin Nutr 59:763S–769S Bosscher D (2009) Fructan prebiotics derived from inulin. In: Prebiotics and probiotics science and technology. Springer, New York, pp 163–205 Budnik LT, Scheer E, Burge PS, Baur X (2016) Sensitising effects of genetically modified enzymes used in flavour, fragrance, detergence and pharmaceutical production: Cross-sectional study. Occup Environ Med 74:39–45 Caicedo L, Silva E, Sánchez O (2009) Semibatch and continuous fructooligosaccharides production by Aspergillus sp. N74 in a mechanically agitated airlift reactor. J Chem Technol Biotechnol 84:650–656 Cascaval D, Galaction AI, Folescu E, Turnea M (2006) Comparative study on the effects of n–dodecane addition on oxygen transfer in stirred bioreactors for simulated, bacterial and yeasts broths. Biochem Eng J 31:56–66 Castro CC, Nobre C, Duprez ME, De Weireld G, Hantson AL (2017) Screening and selection of potential carriers to immobilize Aureobasidium pullulans cells for fructo–oligosaccharides production. Biochem Eng J 118:82–90 Chacón-Villalobos A (2006) Perspectivas agroindustriales actuales de los oligofructosacáridos (FOS). Agronomía Mesoamericana:265–286 Charalampopoulos D, Rastall RA (2012) Prebiotics in foods. Curr Opin Biotechnol 23:187–191 Chen WC, Liu CH (1996) Production of β−fructofuranosidase by Aspergillus japonicus. Enzym Microb Technol 18:153–160 Chien CS, Lee WC, Lin TJ (2001) Immobilization of Aspergillus japonicus by entrapping cells in gluten for production of fructooligosaccharides. Enzym Microb Technol 29:252–257 Chisti Y (2010) Fermentation technology. In: Soetaert W, Vandamme EJ (eds) Industrial biotechnology: sustainable growth and economic success. Wiley–VCH, Weinheim, pp 149–171 Chisti Y, Moo-Young M (1986) Disruption of microbial cells for intracellular products. Enzyme Microb Techno l8:194–204 Cinar A, Parulekar SJ, Undey C, Birol G (2003). Batch fermentation: modeling: monitoring, and control. CRC press 648p Courtin CM, Swennen K, Verjans P, Delcour JA (2009) Heat and pH stability of prebiotic arabinoxylooligosaccharides, xylooligosaccharides and fructooligosaccharides. Food Chem 112:831–837 Coussement PAA (1999) Nutritional and health benefits of inulin and oligofructose inulin and oligofructose: safe intakes and legal status. J Nutr 129:1412–1417 Couto SR, Sanromán MA (2006) Application of solid–state fermentation to food industry—a review. J Food Eng 76:291–302 Crittenden RG, Playne M (1996) Production, properties and applications of food–grade oligosaccharides. Trends Food Sci Technol 7:353–361 Csanádi Z, Sisak C (2008) Production of short chain fructooligosaccharides. Hungar J Ind Chem 36:1–2 de Almeida MN, Guimarães VM, Falkoski DL, de Camargo BR, Fontes-Sant’ana GC, Maitan-Alfenas GP, de Rezende ST (2018) Purification and characterization of an invertase and a transfructosylase from Aspergillus terreus. J Food Biochem 42:12551 Deng C, Huang T, Jiang Z, Lv X, Liu L, Chen J, Du G (2019) Enzyme engineering and industrial bioprocess. In: Pandey A, Larroche C, Soccol CR (eds) Current developments in biotechnology and bioengineering. Elsevier BV, Amsterdam Dhake MS, Kumar G (2012) Partial purification and characterization of fructosyltransferase from Aureobasidium pullulans. Int J Sci Environ Technol 1:88–98 Dhake AB, Patil MB (2007) Effect of substrate feeding on production of fructosyltransferase by Penicillium purpurogenum. Braz J Microbiol 38:194–199 Domínguez A, Nobre C, Rodrigues LR, Peres AM, Torres D, Rocha I, Teixeira J (2012) New improved method for fructooligosaccharides production by Aureobasidium pullulans. Carbohydr Polym 89:1174–1179 Dominguez AL, Rodrigues LR, Lima NM, Teixeira JA (2014) An overview of the recent developments on fructooligosaccharide production and applications. Food Bioprocess Technol 7:324–337 Dorta C, Cruz R, de Oliva-Neto P, Moura DJ (2006) Sugarcane molasses and yeast powder used in the fructooligosaccharides production by Aspergillus japonicus–FCL 119T and Aspergillus niger ATCC 20611. J Ind Microbiol Biotechnol 33:1003–1009 Duan GR, Sheu DC (1996) Production of fructooligosaccharides. Taiwan patents No 270148 Duan KJ, Chen JS, Sheu DC (1994) Kinetic studies and mathematical model for enzymatic production of fructooligosaccharides from sucrose. Enzym Microb Technol 16:334–339 Fabian GCS, Arrizón J P, Gschaedler-Mathis A, Amaya-Delgado L, Flores-Flores NY, Ordaz LE (2017) Fructan enzymatic hydrolysis process through the use of permeabilized yeast cells of the Kluyveromyces genus. Patent No MX 2016002752A Fekih-Salem R, Vande Wouwer A, De Castro C, et al. (2015) Parameter identification of the fermentative production of Fructo−oligosaccharides by Aureobasidium pullulans. In: 2015 19th International Conference on System Theory, Control and Computing (ICSTCC). IEEE, pp 43–48 Fernandes P (2010) Enzymes in food processing: a condensed overview on strategies for better biocatalysts. Enzyme Res 2010:1–19 Fernandes P, Carvalho F (2017) Microbial enzymes for the food industry. In: Brahmachari G (ed) Biotechnology of microbial enzymes. Academic Ress, pp 513–544 Fernández-Arrojo L, Rodríguez-Colinas B, Gutiérrez-Alonso P, Fernández-Lobato M, Alcalde M, Ballesteros AO, Plou FJ (2013) Dried alginate–entrapped enzymes (DALGEEs) and their application to the production of fructooligosaccharides. Process Biochem 48:677–682 Flamm G, Glinsmann W, Kritchevsky D, Prosky L, Roberfroid M (2001) Inulin and oligofructose as dietary fiber: a review of the evidence. Crit Rev Food Sci Nutr 41:353–362 Flores-Maltos DA, Mussatto SI, Contreras-Esquivel JC, Rodríguez-Herrera R, Teixeira JA, Aguilar CN (2016) Biotechnological production and application of fructooligosaccharides. Crit Rev Biotechnol l36:259–267 Ganaie MA, Gupta US (2014) Recycling of cell culture and efficient release of intracellular fructosyltransferase by ultrasonication for the production of fructooligosaccharides. Carbohydr Polym 110:253–258 Ganaie MA, Pathak LK, Gupta US (2011) Production of fructoligsaccharides by Aureobasidium Pullulans using immobilization technique. J Food Technol 9:91–94 Ganaie MA, Gupta US, Kango N (2013) Screening of biocatalysts for transformation of sucrose to fructooligosaccharides. J Mol Catal B–Enzym 97:12–17 Ganaie MA, Rawat HK, Wani OA, Gupta US, Kango N (2014) Immobilization of fructosyltransferase by chitosan and alginate for efficient production of fructooligosaccharides. Process Biochem 49:840–844 Ganaie MA, Soni H, Naikoo GA, Oliveira LTS, Rawat HK, Mehta PK, Narain N (2017) Screening of low cost agricultural wastes to maximize the fructosyltransferase production and its applicability in generation of fructooligosaccharides by solid state fermentation. Int Biodeterior Biodegrad 118:19–26 García-Martín N, Silva V, Carmona FJ, Palacio L, Hernández A, Prádanos P (2014) Pore size analysis from retention of neutral solutes through nanofiltration membranes. The contribution of concentration–polarization. Desalination 344:1–11 García-Ochoa F, Gómez E (2009) Bioreactor scale–up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv 27:153–176 Ghazi I, De Segura AG, Fernández-Arrojo L, Alcalde M, Yates M, Rojas-Cervantes ML, Ballesteros A (2005) Immobilisation of fructosyltransferase from Aspergillus aculeatus on epoxy–activated Sepabeads EC for the synthesis of fructo–oligosaccharides. J Mol Catal B–Enzym 35:19–27 Ghazi I, Fernández-Arrojo L, García-Arellano H, Ferrer M, Ballesteros A, Plou FJ (2007) Purification and kinetic characterization of a fructosyltransferase from Aspergillus aculeatus. J Biotechnol 128:204–211 Gibson GR, Scott KP, Rastall RA, Tuohy KM, Hotchkiss A, Dubert-Ferrandon A, Gareau M, Murphy EF, Saulnier D, Loh GM, Macfarlane S, Delzenne N, Ringel Y, Kozianowski G, Dickmann R, Lenoir Wijnkoop I, Walker C, Buddington R (2010) Dietary prebiotics: current status and new definition. Food Sci Technol Bull Funct Foods 7:1–19 Gomes AJP (2006) Optimization of fructooligosaccharides from Aspergillus. PhD Thesis. University of Minho (Braga, Portugal) Gote M, Patil G, Palamalai M, Rengarajan S, Avalakki UK (2014) Process for production of fructoooligosaccharides. US Patent No 8,871,476 Goulas AK, Kapasakalidis PG, Sinclair HR, Rastall RA, Grandison AS (2002) Purification of oligosaccharides by nanofiltration. J Membr Sci 209:321–335 Goulas AK, Grandison AS, Rastall RA (2003) Fractionation of oligosaccharides by nanofiltration. J Sci Food Agric 83:675–680 Han JS, Park KJ, Shin DS, Kim JH, Kim JC, Lee KC, Lee WH, Kim SW, Park SW. (2007) Microorganism producing fructosyltransferase and method for producing fructooligosaccharides using the same. US Patent No 7,241,607 Hayashi S, Ito K, Nonoguchi M, Takasaki Y, Imada K (1991) Immobilization of a fructosyl–transferring enzyme from Aureobasidium sp. on Shirasu porous glass. J Ferment Bioeng 72:68–70 Hayashi S, Hayashi T, Kinoshita J, Takasaki Y, Imada K (1992) Immobilization of β–fructofuranosidase from Aureobasidium sp. ATCC 20524 on porous silica. J Ind Microbiol Biotechnol 9:247–250 Hayashi S, Matsuzaki K, Inomata Y, Takasaki Y, Imada K (1993) Properties of Aspergillus japonicusβ–fructofuranosidase immobilized on porous silica. World J Microbiol Biotechnol 9:216–212 Henderson WE, King W, Shetty JK (2012) Situ fructooligosaccharides production and sucrose reduction. US Patent No 8,168,242 Hidaka H, Hirayama M, Sumi N (1988b) A fructooligosaccharide–producing enzyme from Aspergillus niger ATCC20611. Agri Biol Chem 52:1181–1187 Huang MP, Wu M, Xu QS, Mo DJ, Feng JX (2016) Highly efficient synthesis of fructooligosaccharides by extracellular fructooligosaccharide–producing enzymes and immobilized cells of Aspergillus aculeatus M105 and purification and biochemical characterization of a fructosyltransferase from the fungus. J Agric Food Chem 64:6425–6432 Itabaiana I, Miranda LSDM, de Souza ROMA (2013) Towards a continuous flow environment for lipase–catalyzed reactions. J Mol Catal B–Enzym 85:1–9 Jiang B, Wu B, Miao M, Li X, Zhang T, Yang C (2012) Method for immobilizing fructosyltransferase by taking mesoporous molecular sieve–chitosan as carrier. Chinese Patent No CN102321605 Jossen V, Eibl R, Pörtner R, Kraume M, Eibl D (2017) Stirred bioreactors: current state and developments, with special emphasis on biopharmaceutical production processes. In: Current developments in biotechnology and bioengineering. Elsevier. pp 179–215 Jung KH, Yun JW, Kang KR et al (1989) Mathematical model for enzymatic production of fructo−oligosaccharides from sucrose. Enzym Microb Technol 11:491–494 Jung KH, Bang SH, Oh TK, Park HJ (2011) Industrial production of fructooligosaccharides by immobilized cells of Aureobasidium pullulans in a packed bed reactor. Biotechnol Lett 33:1621–1624 Kim JF, Székely G, Valtcheva IB, Livingston AG (2014) Increasing the sustainability of membrane processes through cascade approach and solvent recovery—pharmaceutical purification case study. Green Chem 16:133–145 Kirschning A, Solodenko W, Mennecke K (2006) Combining enabling techniques in organic synthesis: continuous flow processes with heterogenized catalysts. Chem–Eur J 12:5972–5990 Kotwal SM, Shankar V (2009) Immobilized invertase. Biotech Adv 27:311–322 Kuhn RC, Filho FM (2010) Purification of fructooligosaccharides in an activated charcoal fixed bed column. New Biotech 27:862–869 Kuhn RC, Mazutti MA (2014) Separation and purification of fructooligosaccharides on a zeolite fixed-bed column. J Sep Sci 37:927–933 Kuhn RC, Filho FM, Silva V, Palacio L, Hernández A, Prádanos P (2010) Mass transfer and transport during purification of fructooligosaccharides by nanofiltration. J Membr Sci 365:356–365 Kuhn RC, Mazutti MA, Albertini LB, Filho FM (2014) Evaluation of fructooligosaccharides separation using a fixed–bed column packed with activated charcoal. New Biotech 31:237–241 Kumar P, Dubey KK (2019) Current perspectives and future strategies for fructooligosaccharides production through membrane bioreactor. In: Shukla P (ed) Applied microbiology and bioengineering. Academic Press, pp 185–202 Kumar CG, Sripada S, Poornachandra Y (2018) Status and future prospects of fructooligosaccharides as nutraceuticals. In: Role of materials science in food bioengineering. Academic Press, pp 451–503 L’Hocine L, Wang Z, Jiang B, Xu S (2000) Purification and partial characterization of fructosyltransferase and invertase from Aspergillus niger AS0023. J Biotechnol 81:73–84 Lai LST, Tsai TH (2002) Application of oxygen vectors to Aspergillus terreus cultivation. J Biosci Bioeng 94:453–459 Lateef A, Oloke JK, Prapulla SG (2007) The effect of ultrasonication on the release of fructosyltransferase from Aureobasidium pullulans CFR 77. Enzym Microb Technol 40:1067–1070 Leenheer L, Frooninckx KMJ, Heroufosse FAA (2011) Fructooligosaccharide composition, process for its production and use. US Patent No 12/995398 Li G, Zhao H, Yuan W (2014) Method for producing fructooligosaccharide. Chinese Patent No 10,423,270 Li PJ, Xia JL, Shan Y, Nie ZY (2015) Comparative study of multi–enzyme production from typical agro–industrial residues and ultrasound–assisted extraction of crude enzyme in fermentation with Aspergillus japonicus PJ01. Bioprocess Biosyst Eng 38:2013–2022 Lim JS, Park SW, Lee JW, Oh KK, Kim SW (2005) Immobilization of Penicillium citrinum by entrapping cells in calcium alginate for the production of neo–fructooligosaccharides. J Microbiol Biotechnol l15:1317–1322 Lin TJ, Lee YC (2008) High–content fructooligosaccharides production using two immobilized microorganisms in an internal–loop airlift bioreactor. J Chin Inst Chem Eng 39:211–217 Lipnizki F, Boelsmand J, Madsen RF (2002) Concepts of industrial-scale diafiltration systems. Desalination 144:179–184 Liu D, Zhou K, Fan M, Ye J (2013) Aspergillus niger and method for catalycally producing fructo–oligosaccharide by virtue of whole–cells of Aspergillus niger. Chinese Patent No 103,045,489 Liu Z, Wang N, Liu F, Li K, Luan Q, Liu K, Wang J , Xiong X (2016) Method for producing fructooligosaccharides through cyclic utilization of Aspergillus oryzae strain. Chinese Patent No CN106244645 Löffelholz C, Kaiser SC, Kraume M, Eibl R, Eibl D (2013a) Dynamic single–use bioreactors used in modern liter–and m 3–scale biotechnological processes: engineering characteristics and scaling up. In: Disposable bioreactors II. Springer. pp. 1–44 Löffelholz C, Husemann U, Greller G, Meusel W, Kauling J, Ay P, Eibl D (2013b) Bioengineering parameters for single-use bioreactors: overview and evaluation of suitable methods. Chem Ing Tech 85:40–56 Lomax AR, Calder PC (2009) Probiotics, immune function, infection and inflammation: a review of the evidence. Br J Nutr 101:633–658 Lorenzoni AS, Aydos LF, Klein MP, Ayub MA, Rodrigues RC, Hertz PF (2015) Continuous production of fructooligosaccharides and invert sugar by chitosan immobilized enzymes: comparison between in fluidized and packed bed reactors. J Mol Catal B-Enzym 111:51–55 Madlová A, Antosova M, Polakovič M, Báles V (2000) Thermal stability of fructosyltransferase from Aureobasidium pullulans. Chem Pap 54:339–344 Madrigal L, Sangronis E (2007) La inulina y derivados como ingredientes claves en alimentos funcionales. Arch Latinoam Nutr 57:387 Maiorano AE, Piccoli RM, Da Silva ES, de Andrade Rodrigues MF (2008) Microbial production of fructosyltransferases for synthesis of pre–biotics. Biotechnol Lett 30:1867–1877 Martins S, Mussatto SI, Martínez-Ávila G, Montañez-Saenz J, Aguilar CN, Teixeira JA (2011) Bioactive phenolic compounds: production and extraction by solid–state fermentation. A review. Biotechnol Adv 29:365–373 Martins GN, Ureta MM, Tymczyszyn EE, Castilho P, Gómez-Zavaglia A (2019) Technological aspects of the production of fructo and galacto−oligosaccharides. Enzymatic synthesis and hydrolysis. Front Nutr 6:78 Menéndez C, Martínez D, Pérez ER, Musacchio A, Ramírez R, López-Munguia A, Hernández L (2019) Engineered thermostable β-fructosidase from Thermotoga maritima with enhanced fructooligosaccharides synthesis. Enzym Microb Technol 125:53–62 Mishra S, Mishra HN (2013) Effect of symbiotic interaction of fructooligosaccharide and probiotics on the acidification profile, textural and rheological characteristics of fermented soy milk. Food Bioprocess Technol 6:3166–3176 Monsan PF, Ouarné F (2009) Oligosaccharides derived from sucrose. In: Prebiotics and probiotics science and technology. Springer New York. pp. 293–336 Montesdeoca VA, Van der Padt A, Boom RM, Janssen AE (2016) Modelling of membrane cascades for the purification of oligosaccharides. J Membr Sci 520:712–722 Muñiz-Márquez DB, Contreras JC, Rodríguez R, Mussatto SI, Teixeira JA, Aguilar CN (2016) Enhancement of fructosyltransferase and fructooligosaccharides production by A. oryzae DIA–MF in solid–state fermentation using aguamiel as culture medium. Bioresour Technol 213:276–282 Muñiz-Márquez DB, Teixeira JA, Mussatto SI, Contreras JC, Rodríguez R, Aguilar CN (2019) Fructo-oligosaccharides (FOS) production by fungal submerged culture using aguamiel as a low-cost by-product. LWT 102:75–79 Muramatsu M, Nakakuki T, Kainuma S, Miwa, T (1994) Production method of branched fructooligosaccharides. US Patent No 5,334,516 Mussatto SI, Teixeira JA (2010) Increase in the fructooligosaccharides yield and productivity by solid–state fermentation with Aspergillus japonicus using agro–industrial residues as support and nutrient source. Biochem Eng J 53:154–157 Mussatto SI, Aguilar CN, Rodrigues L, Teixeira JA (2009) Colonization of Aspergillus japonicus on synthetic materials and application to the production of fructooligosaccharides. Carbohydr Res 344:795–800 Mussatto SI, Aguilar CN, Rodrigues LR, Teixeira JA (2009a) Fructooligosaccharides and β–fructofuranosidase production by Aspergillus japonicus immobilized on lignocellulosic materials. J Mol Catal B Enzym 59:76–81 Mussatto SI, Prata MB, Rodrigues LR, Teixeira JA (2012) Production of fructooligosaccharides and β–fructofuranosidase by batch and repeated batch fermentation with immobilized cells of Penicillium expansum. Eur Food Res Technol 235:13–22 Mutanda T, Mokoena MP, Olaniran AO, Wilhelmi BS, Whiteley CG (2014) Microbial enzymatic production and applications of short–chain fructooligosaccharides and inulooligosaccharides: recent advances and current perspectives. J Ind Microbiol Biotechnol 41:893–906 Mysore NR, Shivakumara M, Sangeetha P, Prapulla S, Prakash M. (2005). Process for preparation of fructooligosaccharides (FOS). US Patent No 10/809811 Nakamura H, Nakane A, Kubota H (2008) Beta–fructofuranosidase variants U S Patent No 2008/0187970 Nakao SI (1994) Determination of pore size and pore size distribution: 3. Filtration membranes. J Membr Sci 96:131–165 Nemukula A, Mutanda T, Wilhelmi BS, Whiteley CG (2009) Response surface methodology: synthesis of short chain fructooligosaccharides with a fructosyltransferase from Aspergillus aculeatus. Bioresour Technol 100:2040–2045 Niness K (1999) Breakfast foods and the health benefits of inulin and oligofructose. Cereal Foods World 44:79–81 Nishizawa K, Nakajima M, Nabetani H (2001) Kinetic study on transfructosylation by β–fructofuranosidase from Aspergillus niger ATCC 20611 and availability of a membrane reactor for fructooligosaccharide production. Food Sci Technol Res 7:39–44 Nguyen QD, Mattes F, Hoschke A, Rezessy-Szabó J, Bhat MK (1999) Production, purification and identification of fructooligosaccharides produced by β-fructofuranosidase from Aspergillus niger IMI 303386. Biotechnol Lett 21:183–186 Nobre C, Teixeira JA, Rodrigues LR (2012) Fructo–oligosaccharides purification from a fermentative broth using an activated charcoal column. New Biotech 29:395–401 Nobre CC, Hantson AL, Teixeira JA, De Weireld G, Rodrigues LR (2016) Strategies for the production of high-content fructo-oligosaccharides through the removal of small saccharides by co–culture or successive fermentation with yeast. Carbohydr Polym 136:274–281 Nobre C, Alves Filho EG, Fernandes FA, Brito ES, Rodrigues S, Teixeira JA, Rodrigues LR (2018a) Production of fructo–oligosaccharides by Aspergillus ibericus and their chemical characterization. LWT–Food Sci Technol 89:58–64 Nobre C, Gonçalves DA, Teixeira JA, Rodrigues LR (2018b) One-step co-culture fermentation strategy to produce high-content fructo-oligosaccharides. Carbohydr Polym 201:31–38 Nobre C, Caitanodo AK, Pires S, Coelho E, Coimbra MA, Holanda MT, Teixeira JA, Figueiredo AL (2019) Process development for the production of prebiotic fructo-oligosaccharides by Penicillium citreonigrum. Bioresour Technol 282:464–474 Ohta Y, Hatada Y, Hidaka Y, Shimane Y, Usui K, Ito T, Fujita K, Yokoi G, Mori M, Sato S, Miyazaki T, Nishikawa A, Tonozuka T (2014) Enhancing thermostability and the structural characterization of Microbacterium saccharophilum K-1 β–fructofuranosidases. Appl Environ Microbiol 98:6667–6677 Olesen M, Gudmand-Høyer E (2000) Efficacy, safety, and tolerability of fructooligosaccharides in the treatment of irritable bowel syndrome. Am J Clin Nutr 72:1570–1575 Olvera C, Castillo E, López-Munguía A (2007) Fructosiltransferasas, fructanas y fructosa. Biotecnología 14:327–345 Özbek B, Ülgen KÖ (2000) The stability of enzymes after sonication. Process Biochem 35:1037–1043 Paineau D, Respondek F, Menet V, Sauvage R, Bornet F, Wagner A (2014) Effects of short–chain fructooligosaccharides on faecal bifidobacteria and specific immune response in formula–fed term infants: a randomized, double–blind, placebo–controlled trial. J Nutr Sci Vitamino l60:167–175 Pandey A, Soccol CR, Mitchell D (2000) New developments in solid state fermentation: I–bioprocesses and products. Process Biochem 35:1153–1169 Panesar PS, Bali V (2016). Prebiotics. In: Encyclopedia of food and health. Elsevier. pp. 464–471 Pérez-Cruz ER, Hernández-García L, Martínez-García D, Trujillo-Toledo LE, Menéndez-Rodríguez C, Sobrino-Legón A, Ramírez-Ibañez R, Feijoo-Costa G, Lema-Rodicio JML (2017) Method for obtaining 1–kestose. Australian Patent No 2017221776 Pfaltzgraff LA, De Bruyn M, Cooper EC, Budarin V, Clark JH (2013) Food waste biomass: a resource for high–value chemicals. Green Chem 15:307–314 Prata MB, Mussatto SI, Rodrigues LR, Teixeira JA (2010) Fructooligosaccharide production by Penicillium expansum. Biotechnol Lett 32:837–840 Qiang X, YongLie C, QianBing W (2009) Health benefit application of functional oligosaccharides. Carbohydr Polym 77:435–441 Ramos P, Vicente AA, Teixeira JA (2013) Biotechnology–derived enzymes for food applications. In: Teixeira JA, Vicente AA (eds) Engineering aspects of food biotechnology. CRC Press, pp 3–20 Rivero-Urgëll M, Santamaría-Orleans A (2001) Oligosaccharides: application in infant food. Early Hum Dev 65:43–52 Roberfroid M (2007) Prebiotics: the concept revisited. J Nutr 137:830–837 Roberfroid MB, Delzenne NM (1998) Dietary fructans. Annu Rev Nutr 18:117–143 Rocha O, Nobre C, Domínguez A et al (2009) A dynamical model for the fermentative production of fructooligosaccharides. Comput Aided Chem Eng 27:1827–1832 Rodríguez-González JA, Arrizón JP, Amaya-Delgado L, Ordaz LE (2017) Fructooligosaccharides production process from sucrose by using yeast permeated cells of the candida genus. Patent MX 2015014004 Rols JL, Goma G (1989) Enhancement of oxygen transfer rates in fermentation using oxygen–vectors. Biotechnol Adv 7:1–14 Saad N, Delattre C, Urdaci M, Schmitter JM, Bressollier P (2013) An overview of the last advances in probiotic and prebiotic field. LWT–Food Sci Technol 50:1–16 Sabater-Molina M, Larqué E, Torrella F, Zamora S (2009) Dietary fructooligosaccharides and potential benefits on health. Physiol Biochem 65:315–328 Sánchez O, Guio F, García D, Silva E, Caicedo L (2008) Fructooligosaccharides production by Aspergillus sp. N74 in a mechanically agitated airlift reactor. Food Bioprod Process 86:109–115 Sánchez OF, Rodríguez AM, Silva E, Caicedo LA (2010) Sucrose biotransformation to fructooligosaccharides by Aspergillus sp. N74 free cells. Food Bioprocess Tech 3:662–673 Sangeetha PT, Ramesh MN, Prapulla SG (2004a) Production of fructo–oligosaccharides by fructosyl transferase from Aspergillus oryzae CFR 202 and Aureobasidium pullulans CFR 77. Process Biochem 39:755–760 Sangeetha PT, Ramesh MN, Prapulla SG (2004b) Production of fructosyl transferase by Aspergillus oryzae CFR 202 in solid−state fermentation using agricultural by−products. Appl Microbiol Biotechnol 65:530–537 Sangeetha PT, Ramesh MN, Prapulla SG (2005a) Fructooligosaccharide production using fructosyl transferase obtained from recycling culture of Aspergillus oryzae CFR 202. Process Biochem 40:1085–1088 Sangeetha PT, Ramesh MN, Prapulla SG (2005b) Recent trends in the microbial production, analysis and application of fructooligosaccharides. Trends Food Sci Technol 16:442–457 Schaepertoens M, Didaskalou C, Kim JF, Livingston AG, Szekely G (2016) Solvent recycle with imperfect membranes: a semi–continuous workaround for diafiltration. J Membr Sci 514:646–658 Schirmer C, Nussbaumer T, Schöb R, Pörtner R, Eibl R, Eibl D (2018) Development, engineering and biological characterization of stirred tank bioreactors. In: Yeh M-K, Chen Y-C (eds) Biopharmaceuticals. InTechOpen, pp 87–107 Scholz-Ahrens KE, Ade P, Marten B, Weber P, Timm W, Aζil Y, Glüer C-C, Schrezenmeir J (2007) Prebiotics, probiotics and synbiotics affect mineral absorption, bone mineral content, and bone structure. J Nutr 137:838–846 Schorsch J, Kinnaert M, Fekih-Salem R et al (2018) Identification and optimal control of fructo−oligosaccharide production. IFAC−PapersOnLine 51:678–683 Schorsch J, Castro CC, Couto LD et al (2019) Optimal control for fermentative production of fructo−oligosaccharides in fed−batch bioreactor. J Process Control 78:124–138 Šedová M, Illeová V, Antošová M, Annus J, Polakovič M (2014) Production of fructosyltransferase in mechanically stirred and air–lift bioreactors. Chem Pap 68:1639–1648 Seo ES, Lee JH, Cho JY, So MY, Lee HS, Chang SS, Lee HJ, Choi JS, Kim D (2004) Synthesis and characterization of fructooligosaccharides using levansucrase with a high concentration of sucrose. Biotechnol Bioprocess Eng 9:339–344 Sheldon RA (2007) Enzyme immobilization: the quest for optimum performance. Adv Synth Catal 349:1289–1307 Sheu DC, Chang JY, Wang CY, Wu CT, Huang CJ (2013) Continuous production of high–purity fructooligosaccharides and ethanol by immobilized Aspergillus japonicus and Pichia heimii. Bioprocess Biosyst Eng 36:1745–1751 Shin HT, Baig SY, Lee SW, Suh DS, Kwon ST, Lim YB, Lee JH (2004) Production of fructo–oligosaccharides from molasses by Aureobasidium pullulans cells. Bioresour Technol 93:59–62 Singh RS, Singh RP (2010) Production of fructooligosaccharides from inulin by endoinulinases and their prebiotic potential. Food Technol Biotechnol 48:435–450 Singhania RR, Patel AK, Pandey A (2010) The industrial production of enzymes. In: Soetaert W, Vandamme, EJ. (Eds.), Industrial biotechnology: sustainable growth and economic success. Wiley–VCH. pp. 207–225 Siró I, Kápolna E, Kápolna B, Lugasi A (2008) Functional food. Product development, marketing and consumer acceptance—a review. Appetite 51:456–467 Smith JA, Luenser SJ (1982) Process for the production of fructose transferase enzyme. US Patent No 4,309,505 Sosa JGA, Garcia LH, Gonzalez AC, Sosa GSH (1997) Fructosyltransferase enzyme, method for its production and DNA encoding the enzyme. US Patent No 5,641,667 Spohner SC, Czermak P (2016) Heterologous expression of Aspergillus terreus fructosyltransferase in Kluyveromyces lactis. New Biotechnol 33:473–479 Tanriseven A, Aslan Y (2005) Immobilization of Pectinex Ultra SP–L to produce fructooligosaccharides. Enzym Microb Technol 36:550–554 Tashiro Y, Ueno H, Takaba M, Hayashi S (2017) Production of functional inulin–type fructooligosaccharides by an enzyme from Penicillium citrinum. Curr Microbiol 74:1114–1117 Thomas L, Larroche C, Pandey A (2013) Current developments in solid–state fermentation. Biochem Eng J 81:146–161 Tomotani EJ, Vitolo M (2007) Production of high–fructose syrup using immobilized invertase in a membrane reactor. J Food Eng 80:662–667 Toyota K, Ohara H (2016) Production method for fructooligosaccharides. US Patent No 2016/0273008 Trollope KM, Gorgens JF, Volschenka H (2015) Semirational directed evolution of loop regions in Aspergillus japonicus β–fructofuranosidase for improved fructooligosaccharide production. Appl Environ Microbiol 20:7319–7329 Trollope K, Volschenk H, Gorgens JF, Coetzee G (2017) A modified beta–fructofuranosidase for fructooligosaccharide production. U.S. Patent Application No. 15/516,372 Trujillo-Toledo LE, Martínez-García D, Pérez-Cruz E et al (2019) Fructosyltransferases and invertases: useful enzymes in the food and feed industries. In: Kuddus M (ed) Enzymes in food biotechnology. Elsevier, pp 451–469 Van Dooren TJ, Van Balken JA (1989) Fructosyl transferase and the preparation of fructose oligomers there with. US Patent No 4,849,356 Van’t Riet K (1979) Review of measuring methods and results in nonviscous gas–liquid mass transfer in stirred vessels. Ind Eng Chem Process Des Dev 18:357–364 Vandáková M, Platková Z, Antosová M, Báles V, Polakovic M (2004) Optimization of cultivation conditions for production of fructosyltransferase by Aureobasidium pullulans. Chem Pap 58:15–22 Vaňková K, Polakovič M (2010) Optimization of single–column chromatographic separation of fructooligosaccharides. Process Biochem 45:1325–1329 Vaňková K, Onderková Z, Antošová M, Polakovič M (2008) Design and economics of industrial production of fructooligosaccharides. Chem Pap 62:375–381 Vargas LHM, Piao ACS, Domingos RN, Carmona EC (2004) Ultrasound effects on invertase from Aspergillus niger. World J Microbiol Biotechnol 20:137–142 Vega R, Zuniga-Hansen ME (2014) A new mechanism and kinetic model for the enzymatic synthesis of short–chain fructooligosaccharides from sucrose. Biochem Eng J 82:158–165 Vega R, Zuniga-Hansen ME (2015) The effect of processing conditions on the stability of fructooligosaccharides in acidic food products. Food Chem 173:784–789 Vicentini A, Liberatore L, Mastrocola D (2016) Functional foods: trends and development of the global market. Ital J Food Sci 28:338–351 Vitolo M (2004) Invertase. In: Said S, Pietro RCLR (eds) Enzymes as biotechnological agents, Ribeirão Preto, pp 207–221 Walton G, Gibson GR (2007) Prebiotics and bowel cancer. Curr Topics Nutraceut Res 5:19–28 Wang LM, Zhou HM (2006) Isolation and identification of a novel Aspergillus japonicus JN19 producing β-fructofuranosidase and characterization of the enzyme. J Food Biochem 30:641–658 Wang S, Duan M, Liu Y, Fan S, Lin X, Zhang Y (2017) Enhanced production of fructosyltransferase in Aspergillus oryzae by genome shuffling. Biotechnol Lett 39:391–396 Ward OP (1989) Biotecnología de la fermentación: principios, procesos y productos. Acribia Wei Y, Xie Q, Yao P (2001) Production process of cane–fruit oligosaccharide with immobilized fructose–base transferase. Chinese Patent No 1,335,402 Yoshikawa J, Amachi S, Shinoyama H, Fujii T (2006) Multiple β–fructofuranosidases by Aureobasidium pullulans DSM2404 and their roles in fructooligosaccharide production. FEMS Microbiol Lett 265:159–163 Yoshikawa J, Amachi S, Shinoyama H, Fujii T (2008) Production of fructooligosaccharides by crude enzyme preparations of β–fructofuranosidase from Aureobasidium pullulans. Biotechnol Lett 30:535–539 Yun JW, Song SK (1993) The production of high−content fructo−oligosaccharides from sucrose by the mixed−enzyme system of fructosyltransferase and glucose oxidase. Biotechnol Lett 15:573–576 Yun JW, Song SK (1996) Continuous production of fructooligosaccharides using fructosyltransferase immobilized on ion exchange resin. Biotechnol Bioprocess Eng 1:18–21 Yun JW, Jung KH, Oh JW, Lee H (1990) Semibatch production of fructo–oligosaccharides from sucrose by immobilized cells of Aureobasidium pullulans. Appl Biochem Biotechnol 24:299–308 Yun JW, Kim DH, Song SK (1997) Enhanced production of fructosyltransferase and glucosyltransferase by substrate−feeding cultures of Aureobasidium pullulans. J Biosci Bioeng 84:261–263 Zambelli P, Serra I, Fernández-Arrojo L, Plou FJ, Tamborini L, Conti P, Contente ML, Molinari F, Romano D (2015) Sweet–and–salty biocatalysis: fructooligosaccharides production using Cladosporium cladosporioides in seawater. Process Biochem 50:1086–1090 Zambelli P, Tamborini L, Cazzamalli S, Pinto A, Arioli S, Balzaretti S, Plou FJ, Fernández-Arrojo L, Molinari F, Conti P, Romano D (2016) An efficient continuous flow process for the synthesis of a non–conventional mixture of fructooligosacharides. Food Chem 190:607–613 Zeng XA, Zhou K, Liu DM, Brennan CS, Brennan M, Zhou JS, Yu SJ (2016) Preparation of fructooligosaccharides using Aspergillus niger 6640 whole–cell as catalyst for bio–transformation. LWT–Food Sci Technol 65:1072–1079 Zhang C (2016) Aureobasidium pullulans AP172–1B and method for producing fructo–oligosaccharide by virtue of Aureobasidium pullulans. Chinese Patent No 10,552,487 Zhang J, Liu C, Xie Y, Li N, Ning Z, Du N, Huang X, Zhong Y (2017) Enhancing fructooligosaccharides production by genetic improvement of the industrial fungus Aspergillus niger ATCC 20611. J Biotechnol 249:25–33 Zhang S, Jiang H, Xue S, Ge N, Sun Y, Chi Z, Liu G, Chi Z (2019a) Efficient conversion of cane molasses into FOSs by a glucose derepression mutant of Aureobasidium melanogenum with high β-fructofuranosidasem activity. J Agric Food Chem 67:13665–13672 Zhang Y, Geary T, Simpson BK (2019b) Genetically modified food enzymes: a review. Curr Opin Food Sci 25:14–18