The muscle satellite cell at 50: the formative years

Springer Science and Business Media LLC - Tập 1 - Trang 1-13 - 2011
Juergen Scharner1, Peter S Zammit1
1Randall Division of Cell and Molecular Biophysics, King's College London, London, UK

Tóm tắt

In February 1961, Alexander Mauro described a cell 'wedged' between the plasma membrane of the muscle fibre and the surrounding basement membrane. He postulated that it could be a dormant myoblast, poised to repair muscle when needed. In the same month, Bernard Katz also reported a cell in a similar location on muscle spindles, suggesting that it was associated with development and growth of intrafusal muscle fibres. Both Mauro and Katz used the term 'satellite cell' in relation to their discoveries. Today, the muscle satellite cell is widely accepted as the resident stem cell of skeletal muscle, supplying myoblasts for growth, homeostasis and repair. Since 2011 marks both the 50th anniversary of the discovery of the satellite cell, and the launch of Skeletal Muscle, it seems an opportune moment to summarise the seminal events in the history of research into muscle regeneration. We start with the 19th-century pioneers who showed that muscle had a regenerative capacity, through to the descriptions from the mid-20th century of the underlying cellular mechanisms. The journey of the satellite cell from electron microscope curio, to its gradual acceptance as a bona fide myoblast precursor, is then charted: work that provided the foundations for our understanding of the role of the satellite cell. Finally, the rapid progress in the age of molecular biology is briefly discussed, and some ongoing debates on satellite cell function highlighted.

Tài liệu tham khảo

Janssen I, Heymsfield SB, Wang ZM, Ross R: Skeletal muscle mass and distribution in 468 men and women aged 18-88 yr. J Appl Physiol. 2000, 89: 81-88. Zenker FA: Über die Veraenderungen der willkührlichen Muskeln im Typhus abdominalis. 1864, Leipzig, Germany: Vogel Waldeyer W: Ueber die Veränderungen der quergestreiften Muskeln bei der Entzündung und dem Typhusprozess, sowie über die Regeneration derselben nach Substanzdefecten. Virchows Archiv. 1865, 34: 472-514. 10.1007/BF02323030. Weber CO: Ueber die Neubildung quergestreifter Muskelfasern, insbesondere die regenerative Neubildung derselben nach Verletzungen. Virchows Archiv. 1867, 39: 216-253. 10.1007/BF01879135. Weber CO: Ueber die Betheiligung der Muskelkörperchen und der quergestreiften Muskeln an den Neubildungen nebst Bemerkungen über die Lehre von der Specificität der Gewebselemente. Virchows Archiv. 1867, 39: 254-269. 10.1007/BF01879136. Mauro A: Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol. 1961, 9: 493-495. 10.1083/jcb.9.2.493. Katz B: The terminations of the afferent nerve fibre in the muscle spindle of the frog. Philos Trans R Soc Lond (Biol). 1961, 243: 221-240. 10.1098/rstb.1961.0001. Bischoff R: The satellite cell and muscle regeneration. Myology. 1994, New York: McGraw Hill, 1: Couteaux R: Recherches Sur L'histogénèse Du Muscle Strié Des Mammifères Et La Formation Des Plaques Motrices. Bull Biol Fr Belg. 1941, 75: 101-239. Valentin G: Handbuch der Entwicklungsgeschichte des Menschen. 1835, Berlin, Germany: August Rücker Rokitansky C: Pathologisch-anatomische Beobachtungen. Zeitschrift der kais kön Gesellschaft der Aerzte zu Wien. 1849, 5: 329-333. Virchow R: Pathologische Neubildung von quergestreiften Muskelfasern. Verhandlungen der Physikalisch-Medicinischen Gesellschaft. 1850, 1: 189-191. Billroth T: Zur Entwicklungsgeschichte und chirurgischen Bedeutung des Hodencystoids. II. Ein Hodencystoid mit quergestreiften Muskelfasern. Archiv für pathologische Anatomie und Physiologie und für klinische Medicin. 1855, 8: 443-446. Weber CO: Anatomische Untersuchung einer hypertrophischen Zunge nebst Bemerkungen über die Neubildung quergestreifter Muskelfasern. Virchows Archiv. 1854, 7: 115-126. 10.1007/BF01936232. Weber CO: Ueber die Regeneration quergestreifter Muskelfasern. Vorläufige Mittheilung. Centralblatt für die medicinischen Wissenschaften. 1863, 34: 529-531. Schwann T: Mikroskopische Untersuchungen über die Uebereinstimmung in der Struktur und dem Wachstume der Thiere und Pflanzen. 1839, Berlin, Germany: Verlag der Sander'schen Buchhandlung Maslowsky J: Ueber die Neubildung und die Heilung des quergestreiften Muskelgewebes nach traumatischen Verletzungen. Wiener Medizinische Wochenschrift. 1868, 12: 192-194. Erbkam R: Beiträge zur Kenntniss der Degeneration und Regeneration von quergestreifter Musculatur nach Quetschung. Virchows Archiv. 1880, 79: 49-75. 10.1007/BF01877573. Askanazy M: Zur Regeneration der quergestreiften Muskelfasern. Virchows Archiv. 1891, 125: 520-542. 10.1007/BF01970870. Neumann E: Ueber den Heilungsprocess nach Muskelverletzungen. Archiv für Mikroskopische Anatomie. 1868, 4: 323-333. 10.1007/BF02955365. Volkmann R: Über die Regeneration des quergestreiften Muskelgewebes beim Menschen und Säugethier. Beitr path Anat. 1893, 12: 233-332. Elson J: Auto- and homoiotransplantation of cross-striated muscle tissue in the rat. Am J Pathol. 1929, 5: 425-438. Millar WG: Regeneration of skeletal muscle in young rabbits. J Path. 1934, 38: 145-151. 10.1002/path.1700380205. Le Gros Clark WE: An experimental study of the regeneration of mammalian striped muscle. J Anat. 1946, 80: 24-36. Le Gros Clark WE, Blomfield LB: The efficiency of intramuscular anastomoses, with observations on the regeneration of devascularized muscle. J Anat. 1946, 79: 15-32. Le Gros Clark WE, Wajda HS: The growth and maturation of regenerating striated muscle fibres. J Anat. 1947, 81: 56-63. Studitsky AN: Free auto- and homografts of muscle tissue in experiments on animals. Ann N Y Acad Sci. 1964, 120: 789-801. Carlson BM: Regeneration research in the Soviet Union. Anat Rec. 1968, 160: 665-674. 10.1002/ar.1091600402. Taylor JH: Intracellular localization of labeled nucleic acid determined by autoradiographs. Science. 1953, 118: 555-557. Taylor JH, Woods PS, Hughes WL: The organization and duplication of chromosomes as revealed by autoradiographic studies using tritium-labeled thymidinee. Proc Natl Acad Sci USA. 1957, 43: 122-128. 10.1073/pnas.43.1.122. Bintliff S, Walker BE: Radioautographic study of skeletal muscle regeneration. Am J Anat. 1960, 106: 233-245. 10.1002/aja.1001060304. Pietsch P: Effects of colchicine on regeneration of mouse skeletal muscle. Anat Rec. 1961, 139: 167-10.1002/ar.1091390208. Stockdale FE: Myogenesis - the early years. Skeletal Muscle Repair and Regeneration. Edited by: Schiaffino S, Partridge T. 2008, Amsterdam, The Netherlands: Springer, 1-17. Lewis WH, Lewis MR: Behavior of cross striated muscle in tissue cultures. Am J Anat. 1917, 22: 169-194. 10.1002/aja.1000220202. Tello JF: Genesis de las Terminaciones Nerviosas Motrices y Sensitivas. Trab Lab Invest Biol Univ Madrid. 1917, 15: 101-199. Pogogeff IA, Murray MR: Form and behavior of adult mammalian skeletal muscle in vitro. Anat Rec. 1946, 95: 321-335. 10.1002/ar.1090950308. Finck H, Holtzer H, Marshall JM: An immunochemical study of the distribution of myosin in glycerol extracted muscle. J Biophys Biochem Cytol. 1956, 2 (Suppl): 175-178. Holtzer H, Marshall JM, Finck H: An analysis of myogenesis by the use of fluorescent antimyosin. J Biophys Biochem Cytol. 1957, 3: 705-724. 10.1083/jcb.3.5.705. Lash JW, Holtzer H, Swift H: Regeneration of mature skeletal muscle. Anat Rec. 1957, 128: 679-697. 10.1002/ar.1091280404. Konigsberg IR: Cellular differentiation in colonies derived from single cells platings of freshly isolated chick embryo muscle cells. Proc Natl Acad Sci USA. 1961, 47: 1868-1872. 10.1073/pnas.47.11.1868. Konigsberg IR: Clonal analysis of myogenesis. Science. 1963, 140: 1273-1284. 10.1126/science.140.3573.1273. Konigsberg IR: The differentiation of cross-striated myofibrils in short term cell culture. Exp Cell Res. 1960, 21: 414-420. 10.1016/0014-4827(60)90273-1. Capers CR: Multinucleation of skeletal muscle in vitro. J Biophys Biochem Cytol. 1960, 7: 559-566. 10.1083/jcb.7.3.559. Cooper WG, Konigsberg IR: Dynamics of myogenesis in vitro. Anat Rec. 1961, 140: 195-205. 10.1002/ar.1091400305. Stockdale FE, Holtzer H: DNA synthesis and myogenesis. Exp Cell Res. 1961, 24: 508-520. 10.1016/0014-4827(61)90450-5. Konigsberg IR, McElvain N, Tootle M, Herrmann H: The dissociability of deoxyribonucleic acid synthesis from the development of multinuclearity of muscle cells in culture. J Biophys Biochem Cytol. 1960, 8: 333-343. 10.1083/jcb.8.2.333. Mintz B, Baker WW: Normal mammalian muscle differentiation and gene control of isocitrate dehydrogenase synthesis. Proc Natl Acad Sci USA. 1967, 58: 592-598. 10.1073/pnas.58.2.592. Yaffe D: Retention of differentiation potentialities during prolonged cultivation of myogenic cells. Proc Natl Acad Sci USA. 1968, 61: 477-483. 10.1073/pnas.61.2.477. Yaffe D, Saxel O: Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature. 1977, 270: 725-727. 10.1038/270725a0. Blau HM, Chiu CP, Webster C: Cytoplasmic activation of human nuclear genes in stable heterocaryons. Cell. 1983, 32: 1171-1180. 10.1016/0092-8674(83)90300-8. Hauschka SD, Linkhart TA, Clegg C, Merrill G: Clonal studies of human and mouse muscle. Muscle Regeneration. Edited by: Mauro A. 1979, New York, USA: Raven Press, 311-322. Linkhart TA, Clegg CH, Hauschka SD: Control of mouse myoblast commitment to terminal differentiation by mitogens. J Supramol Struct. 1980, 14: 483-498. 10.1002/jss.400140407. Ishikawa H: Electron microscopic observations of satellite cells with special reference to the development of mammalian skeletal muscles. Z Anat Entwicklungsgesch. 1966, 125: 43-63. 10.1007/BF00521974. Muir AR, Kanji AH, Allbrook D: The structure of the satellite cells in skeletal muscle. J Anat. 1965, 99: 435-444. Venable JH: Morphology of the cells of normal, testosterone-deprived and testosterone-stimulated levator ani muscles. Am J Anat. 1966, 119: 271-301. 10.1002/aja.1001190206. Aloisi M, Mussini I, Schiaffino S: Activation of muscle nuclei in denervation and hypertrophy. Basic Research in Myology. Edited by: Kakulus B. 1973, Amsterdam, The Netherlands: Excerpta Medica, 338-342. Kelly AM: Perisynaptic satellite cells in the developing and mature rat soleus muscle. Anat Rec. 1978, 190: 891-903. 10.1002/ar.1091900409. Allbrook D: An electron microscopic study of regenerating skeletal muscle. J Anat. 1962, 96: 137-152. Price HM, Howes EL, Blumberg JM: Ultrastructural alterations in skeletal muscle fibers injured by cold. II. Cells on the sarcolemmal tube: observations on "discontinuous" regeneration and myofibril formation. Lab Invest. 1964, 13: 1279-1302. Thornton CR: The histogenesis of muscle in the regenerating forelimb of larval Amblystoma punctatum. J Morphol. 1938, 62: 17-47. 10.1002/jmor.1050620104. Hay ED: The fine structure of blastema cells and differentiating cartilage cells in regenerating limbs of Amblystoma larvae. J Biophys Biochem Cytol. 1958, 4: 583-591. 10.1083/jcb.4.5.583. Walker BE: The origin of myoblasts and the problem of dedifferentiation. Exp Cell Res. 1963, 30: 80-92. 10.1016/0014-4827(63)90215-5. Reznik M: Origin of myoblasts during skeletal muscle regeneration. Electron microscopic observations. Lab Invest. 1969, 20: 353-363. Hess A, Rosner S: The satellite cell bud and myoblast in denervated mammalian muscle fibers. Am J Anat. 1970, 129: 21-39. 10.1002/aja.1001290103. Shafiq SA, Gorycki MA: Regeneration in skeletal muscle of mouse: some electron-microscope observations. J Pathol Bacteriol. 1965, 90: 123-127. 10.1002/path.1700900113. Church JCT, Noronha RFX, Allbrook DB: Satellite cells and skeletal muscle regeneration. Br J Surg. 1966, 53: 638-10.1002/bjs.1800530720. Reznik M: Thymidine-3H uptake by satellite cells of regenerating skeletal muscle. J Cell Biol. 1969, 40: 568-571. 10.1083/jcb.40.2.568. Walker BE: A radioautographic study of muscle regeneration in dystrophic mice. Am J Pathol. 1962, 41: 41-53. Laguens R: Satellite cells of skeletal muscle fibers in human progressive muscular dystrophy. Virchows Arch Pathol Anat Physiol Klin Med. 1963, 336: 564-569. 10.1007/BF01003621. Shafiq SA, Gorycki MA, Milhorat AT: An electron microscopic study of regeneration and satellite cells in human muscle. Neurology. 1967, 17: 567-574 passim. Morpurgo B: Ueber die postembryonale Entwicklung der quergestreiften Muskeln von weißen Ratten. Anatomischer Anzeiger. 1898, 15: 200-206. Enesco M, Puddy D: Increase in the number of nuclei and weight in skeletal muscle of rats of various ages. Am J Anat. 1964, 114: 235-244. 10.1002/aja.1001140204. Macconnachie HF, Enesco M, Leblond CP: The mode of increase in the number of skeletal muscle nuclei in the postnatal rat. Am J Anat. 1964, 114: 245-253. 10.1002/aja.1001140205. Shafiq SA, Gorycki MA, Mauro A: Mitosis during postnatal growth in skeletal and cardiac muscle of the rat. J Anat. 1968, 103: 135-141. Moss FP, Leblond CP: Nature of dividing nuclei in skeletal muscle of growing rats. J Cell Biol. 1970, 44: 459-462. 10.1083/jcb.44.2.459. Moss FP, Leblond CP: Satellite cells as the source of nuclei in muscles of growing rats. Anat Rec. 1971, 170: 421-435. 10.1002/ar.1091700405. Allbrook DB, Han MF, Hellmuth AE: Population of muscle satellite cells in relation to age and mitotic activity. Pathology. 1971, 3: 223-243. Schultz E: A quantitative study of the satellite cell population in postnatal mouse lumbrical muscle. Anat Rec. 1974, 180: 589-595. 10.1002/ar.1091800405. Schultz E, Gibson MC, Champion T: Satellite cells are mitotically quiescent in mature mouse muscle: an EM and radioautographic study. J Exp Zool. 1978, 206: 451-456. 10.1002/jez.1402060314. Schultz E: Fine structure of satellite cells in growing skeletal muscle. Am J Anat. 1976, 147: 49-70. 10.1002/aja.1001470105. Carlson BM: The regeneration of skeletal muscle. A review. Am J Anat. 1973, 137: 119-149. 10.1002/aja.1001370202. Bischoff R: Enzymatic liberation of myogenic cells from adult rat muscle. Anat Rec. 1974, 180: 645-661. 10.1002/ar.1091800410. Bischoff R: Regeneration of single skeletal muscle fibers in vitro. Anat Rec. 1975, 182: 215-235. 10.1002/ar.1091820207. Konigsberg UR, Lipton BH, Konigsberg IR: The regenerative response of single mature muscle fibers isolated in vitro. Dev Biol. 1975, 45: 260-275. 10.1016/0012-1606(75)90065-2. Neerunjun JS, Dubowitz V: Identification of regenerated dystrophic minced muscle transplanted in normal mice. J Neurol Sci. 1975, 24: 33-38. 10.1016/0022-510X(75)90005-2. Gutmann E, Mares V, Stichova J: Fate of 3H-thymidine labelled myogenic cells in regeneration of muscle isografts. Cell Tissue Res. 1976, 167: 117-123. 10.1007/BF00220163. Snow MH: Myogenic cell formation in regenerating rat skeletal muscle injured by mincing. II. An autoradiographic study. Anat Rec. 1977, 188: 201-217. 10.1002/ar.1091880206. Snow MH: An autoradiographic study of satellite cell differentiation into regenerating myotubes following transplantation of muscles in young rats. Cell Tissue Res. 1978, 186: 535-540. Partridge TA, Grounds M, Sloper JC: Evidence of fusion between host and donor myoblasts in skeletal muscle grafts. Nature. 1978, 273: 306-308. 10.1038/273306a0. Watt DJ, Lambert K, Morgan JE, Partridge TA, Sloper JC: Incorporation of donor muscle precursor cells into an area of muscle regeneration in the host mouse. J Neurol Sci. 1982, 57: 319-331. 10.1016/0022-510X(82)90038-7. Lipton BH, Schultz E: Developmental fate of skeletal muscle satellite cells. Science. 1979, 205: 1292-1294. 10.1126/science.472747. Sloper JC, Partridge TA: Skeletal muscle: regeneration and transplantation studies. Br Med Bull. 1980, 36: 153-158. Allbrook D: Skeletal muscle regeneration. Muscle Nerve. 1981, 4: 234-245. 10.1002/mus.880040311. Mauro A, (Ed.): Muscle Regeneration. 1979, New York, USA: Raven Press Cardasis CA, Cooper GW: A method for the chemical isolation of individual muscle fibers and its application to a study of the effect of denervation on the number of nuclei per muscle fiber. J Exp Zool. 1975, 191: 333-346. 10.1002/jez.1401910304. Cardasis CA, Cooper GW: An analysis of nuclear numbers in individual muscle fibers during differentiation and growth: a satellite cell-muscle fiber growth unit. J Exp Zool. 1975, 191: 347-358. 10.1002/jez.1401910305. Kopriwa BM, Moss FP: A radioautographic technique for whole mounts of muscle fibers. J Histochem Cytochem. 1971, 19: 51-55. 10.1177/19.1.51. Bekoff A, Betz WJ: Physiological properties of dissociated muscle fibres obtained from innervated and denervated adult rat muscle. J Physiol. 1977, 271: 25-40. Bekoff A, Betz W: Properties of isolated adult rat muscle fibres maintained in tissue culture. J Physiol. 1977, 271: 537-547. Rubin LL, Keller CE, Schuetze SM: Satellite cells in isolated adult muscle fibres in tissue culture. Muscle Regeneration. Edited by: Mauro A. 1979, New York, USA: Raven Press, 281-284. Bischoff R: Proliferation of muscle satellite cells on intact myofibers in culture. Dev Biol. 1986, 115: 129-139. 10.1016/0012-1606(86)90234-4. Rosenblatt JD, Lunt AI, Parry DJ, Partridge TA: Culturing satellite cells from living single muscle fiber explants. In Vitro Cell Dev Biol Anim. 1995, 31: 773-779. 10.1007/BF02634119. Collins CA, Zammit PS: Isolation and grafting of single muscle fibres. Methods Mol Biol. 2009, 482: 319-330. 10.1007/978-1-59745-060-7_20. Weintraub H, Davis R, Tapscott S, Thayer M, Krause M, Benezra R, Blackwell TK, Turner D, Rupp R, Hollenberg S, Zhuang Y, Lassar A: The myoD gene family: nodal point during specification of the muscle cell lineage. Science. 1991, 251: 761-766. 10.1126/science.1846704. Grounds MD, Garrett KL, Lai MC, Wright WE, Beilharz MW: Identification of skeletal muscle precursor cells in vivo by use of MyoD1 and myogenin probes. Cell Tissue Res. 1992, 267: 99-104. 10.1007/BF00318695. Fuchtbauer EM, Westphal H: MyoD and myogenin are coexpressed in regenerating skeletal muscle of the mouse. Dev Dyn. 1992, 193: 34-39. 10.1002/aja.1001930106. Yablonka-Reuveni Z, Rivera AJ: Temporal expression of regulatory and structural muscle proteins during myogenesis of satellite cells on isolated adult rat fibers. Dev Biol. 1994, 164: 588-603. 10.1006/dbio.1994.1226. Irintchev A, Zeschnigk M, Starzinski-Powitz A, Wernig A: Expression pattern of M-cadherin in normal, denervated, and regenerating mouse muscles. Dev Dyn. 1994, 199: 326-337. 10.1002/aja.1001990407. Gnocchi VF, White RB, Ono Y, Ellis JA, Zammit PS: Further characterisation of the molecular signature of quiescent and activated mouse muscle satellite cells. PLoS One. 2009, 4: e5205-10.1371/journal.pone.0005205. Tedesco FS, Dellavalle A, Diaz-Manera J, Messina G, Cossu G: Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells. J Clin Invest. 2010, 120: 11-19. 10.1172/JCI40373. Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA: Pax7 is required for the specification of myogenic satellite cells. Cell. 2000, 102: 777-786. 10.1016/S0092-8674(00)00066-0. Beauchamp JR, Heslop L, Yu DS, Tajbakhsh S, Kelly RG, Wernig A, Buckingham ME, Partridge TA, Zammit PS: Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J Cell Biol. 2000, 151: 1221-1234. 10.1083/jcb.151.6.1221. Blanco-Bose WE, Yao CC, Kramer RH, Blau HM: Purification of mouse primary myoblasts based on alpha 7 integrin expression. Exp Cell Res. 2001, 265: 212-220. 10.1006/excr.2001.5191. Baroffio A, Hamann M, Bernheim L, Bochaton-Piallat ML, Gabbiani G, Bader CR: Identification of self-renewing myoblasts in the progeny of single human muscle satellite cells. Differentiation. 1996, 60: 47-57. 10.1046/j.1432-0436.1996.6010047.x. Yoshida N, Yoshida S, Koishi K, Masuda K, Nabeshima Y: Cell heterogeneity upon myogenic differentiation: down-regulation of MyoD and Myf-5 generates 'reserve cells'. J Cell Sci. 1998, 111: 769-779. Kitzmann M, Carnac G, Vandromme M, Primig M, Lamb NJ, Fernandez A: The muscle regulatory factors MyoD and myf-5 undergo distinct cell cycle-specific expression in muscle cells. J Cell Biol. 1998, 142: 1447-1459. 10.1083/jcb.142.6.1447. Halevy O, Piestun Y, Allouh MZ, Rosser BW, Rinkevich Y, Reshef R, Rozenboim I, Wleklinski-Lee M, Yablonka-Reuveni Z: Pattern of Pax7 expression during myogenesis in the posthatch chicken establishes a model for satellite cell differentiation and renewal. Dev Dyn. 2004, 231: 489-502. 10.1002/dvdy.20151. Olguin HC, Olwin BB: Pax-7 up-regulation inhibits myogenesis and cell cycle progression in satellite cells: a potential mechanism for self-renewal. Dev Biol. 2004, 275: 375-388. 10.1016/j.ydbio.2004.08.015. Zammit PS, Golding JP, Nagata Y, Hudon V, Partridge TA, Beauchamp JR: Muscle satellite cells adopt divergent fates: a mechanism for self-renewal?. J Cell Biol. 2004, 166: 347-357. 10.1083/jcb.200312007. McGeachie JK, Grounds MD: Initiation and duration of muscle precursor replication after mild and severe injury to skeletal muscle of mice. An autoradiographic study. Cell Tissue Res. 1987, 248: 125-130. 10.1007/BF01239972. Grounds MD: Towards understanding skeletal muscle regeneration. Pathol Res Pract. 1991, 187: 1-22. Grounds MD, McGeachie JK: Reutilisation of tritiated thymidine in studies of regenerating skeletal muscle. Cell Tissue Res. 1987, 250: 141-148. 10.1007/BF00214665. Partridge TA, Morgan JE, Coulton GR, Hoffman EP, Kunkel LM: Conversion of mdx myofibres from dystrophin-negative to -positive by injection of normal myoblasts. Nature. 1989, 337: 176-179. 10.1038/337176a0. Day K, Shefer G, Shearer A, Yablonka-Reuveni Z: The depletion of skeletal muscle satellite cells with age is concomitant with reduced capacity of single progenitors to produce reserve progeny. Dev Biol. 2010, 340: 330-343. 10.1016/j.ydbio.2010.01.006. Montarras D, Morgan J, Collins C, Relaix F, Zaffran S, Cumano A, Partridge T, Buckingham M: Direct isolation of satellite cells for skeletal muscle regeneration. Science. 2005, 309: 2064-2067. 10.1126/science.1114758. Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F: Muscle regeneration by bone marrow-derived myogenic progenitors. Science. 1998, 279: 1528-1530. 10.1126/science.279.5356.1528. Heslop L, Beauchamp JR, Tajbakhsh S, Buckingham ME, Partridge TA, Zammit PS: Transplanted primary neonatal myoblasts can give rise to functional satellite cells as identified using the Myf5nlacZl+ mouse. Gene Ther. 2001, 8: 778-783. 10.1038/sj.gt.3301463. Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA, Morgan JE: Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell. 2005, 122: 289-301. 10.1016/j.cell.2005.05.010. Sacco A, Doyonnas R, Kraft P, Vitorovic S, Blau HM: Self-renewal and expansion of single transplanted muscle stem cells. Nature. 2008, 456: 502-506. 10.1038/nature07384. Tamaki T, Akatsuka A, Ando K, Nakamura Y, Matsuzawa H, Hotta T, Roy RR, Edgerton VR: Identification of myogenic-endothelial progenitor cells in the interstitial spaces of skeletal muscle. J Cell Biol. 2002, 157: 571-577. 10.1083/jcb.200112106. Mitchell KJ, Pannerec A, Cadot B, Parlakian A, Besson V, Gomes ER, Marazzi G, Sassoon DA: Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development. Nat Cell Biol. 2010, 12: 257-266. Jackson KA, Mi T, Goodell MA: Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proc Natl Acad Sci USA. 1999, 96: 14482-14486. 10.1073/pnas.96.25.14482. Sampaolesi M, Torrente Y, Innocenzi A, Tonlorenzi R, D'Antona G, Pellegrino MA, Barresi R, Bresolin N, De Angelis MG, Campbell KP, Bottinelli R, Cossu G: Cell therapy of alpha-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science. 2003, 301: 487-492. 10.1126/science.1082254. Bateson RG, Woodrow DF, Sloper JC: Circulating cell as a source of myoblasts in regenerating injured mammalian skeletal muscle. Nature. 1967, 213: 1035-1036. 10.1038/2131035a0. Torrente Y, Belicchi M, Sampaolesi M, Pisati F, Meregalli M, D'Antona G, Tonlorenzi R, Porretti L, Gavina M, Mamchaoui K, Pellegrino MA, Furling D, Mouly V, Butler-Browne GS, Bottinelli R, Cossu G, Bresolin N: Human circulating AC133(+) stem cells restore dystrophin expression and ameliorate function in dystrophic skeletal muscle. J Clin Invest. 2004, 114: 182-195. Grounds MD: Skeletal muscle precursors do not arise from bone marrow cells. Cell Tissue Res. 1983, 234: 713-722. Kirillova I, Gussoni E, Goldhamer DJ, Yablonka-Reuveni Z: Myogenic reprogramming of retina-derived cells following their spontaneous fusion with myotubes. Dev Biol. 2007, 311: 449-463. 10.1016/j.ydbio.2007.08.056. Towle W: On muscle regeneration in the limbs of Plethedon. Biol Bull. 1901, 2: 289-299. 10.2307/1535706. Tanaka EM, Gann AA, Gates PB, Brockes JP: Newt myotubes reenter the cell cycle by phosphorylation of the retinoblastoma protein. J Cell Biol. 1997, 136: 155-165. 10.1083/jcb.136.1.155. Morrison JI, Loof S, He P, Simon A: Salamander limb regeneration involves the activation of a multipotent skeletal muscle satellite cell population. J Cell Biol. 2006, 172: 433-440. 10.1083/jcb.200509011. Morrison JI, Borg P, Simon A: Plasticity and recovery of skeletal muscle satellite cells during limb regeneration. FASEB J. 2010, 24: 750-756. 10.1096/fj.09-134825. Walker BE: Skeletal muscle regeneration in young rats. Am J Anat. 1972, 133: 369-378. 10.1002/aja.1001330310. Odelberg SJ, Kollhoff A, Keating MT: Dedifferentiation of mammalian myotubes induced by msx1. Cell. 2000, 103: 1099-1109. 10.1016/S0092-8674(00)00212-9. Pajcini KV, Corbel SY, Sage J, Pomerantz JH, Blau HM: Transient inactivation of Rb and ARF yields regenerative cells from postmitotic mammalian muscle. Cell Stem Cell. 2010, 7: 198-213. 10.1016/j.stem.2010.05.022. Pallafacchina G, Francois S, Regnault B, Czarny B, Dive V, Cumano A, Montarras D, Buckingham M: An adult tissue-specific stem cell in its niche: a gene profiling analysis of in vivo quiescent and activated muscle satellite cells. Stem Cell Res. 2010, 4: 77-91. 10.1016/j.scr.2009.10.003. Abou-Khalil R, Brack AS: Muscle stem cells and reversible quiescence: the role of sprouty. Cell Cycle. 2010, 9: 2575-2580. Luo D, Renault VM, Rando TA: The regulation of Notch signaling in muscle stem cell activation and postnatal myogenesis. Semin Cell Dev Biol. 2005, 16: 612-622. 10.1016/j.semcdb.2005.07.002. Crist CG, Buckingham M: microRNAs gain magnitude in muscle. Cell Cycle. 2009, 8: 3627-3628. 10.4161/cc.8.22.9960. Chen JF, Tao Y, Li J, Deng Z, Yan Z, Xiao X, Wang DZ: microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J Cell Biol. 2010, 190: 867-879. 10.1083/jcb.200911036. Cosgrove BD, Sacco A, Gilbert PM, Blau HM: A home away from home: challenges and opportunities in engineering in vitro muscle satellite cell niches. Differentiation. 2009, 78: 185-194. 10.1016/j.diff.2009.08.004. Gilbert PM, Havenstrite KL, Magnusson KE, Sacco A, Leonardi NA, Kraft P, Nguyen NK, Thrun S, Lutolf MP, Blau HM: Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science. 2010, 329: 1078-1081. 10.1126/science.1191035. Biressi S, Rando TA: Heterogeneity in the muscle satellite cell population. Semin Cell Dev Biol. 2010, 21: 845-854. 10.1016/j.semcdb.2010.09.003. Kuang S, Kuroda K, Le Grand F, Rudnicki MA: Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell. 2007, 129: 999-1010. 10.1016/j.cell.2007.03.044. Schultz E, Lipton BH: Skeletal muscle satellite cells: changes in proliferation potential as a function of age. Mech Ageing Dev. 1982, 20: 377-383. 10.1016/0047-6374(82)90105-1. Ono Y, Boldrin L, Knopp P, Morgan JE, Zammit PS: Muscle satellite cells are a functionally heterogeneous population in both somite-derived and branchiomeric muscles. Dev Biol. 2010, 337: 29-41. 10.1016/j.ydbio.2009.10.005. Conboy MJ, Cerletti M, Wagers AJ, Conboy IM: Immuno-analysis and FACS sorting of adult muscle fiber-associated stem/precursor cells. Methods Mol Biol. 2010, 621: 165-173. 10.1007/978-1-60761-063-2_11. Clayton E, Doupe DP, Klein AM, Winton DJ, Simons BD, Jones PH: A single type of progenitor cell maintains normal epidermis. Nature. 2007, 446: 185-189. 10.1038/nature05574. Barker N, Clevers H: Leucine-rich repeat-containing G-protein-coupled receptors as markers of adult stem cells. Gastroenterology. 2010, 138: 1681-1696. 10.1053/j.gastro.2010.03.002. Le Grand F, Jones AE, Seale V, Scime A, Rudnicki MA: Wnt7a activates the planar cell polarity pathway to drive the symmetric expansion of satellite stem cells. Cell Stem Cell. 2009, 4: 535-547. 10.1016/j.stem.2009.03.013. Lepper C, Conway SJ, Fan CM: Adult satellite cells and embryonic muscle progenitors have distinct genetic requirements. Nature. 2009, 460: 627-631. 10.1038/nature08209. Sambasivan R, Yao R, Kissenpfennig A, Van Wittenberghe L, Paldi A, Gayraud-Morel B, Guenou H, Malissen B, Tajbakhsh S, Galy A: Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development. 2011, 138 (17): 3647-3656. 10.1242/dev.067587.