A consistent and accurate<i>ab initio</i>parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu

Journal of Chemical Physics - Tập 132 Số 15 - 2010
Stefan Grimme1, Jens Antony1, Stephan Ehrlich1, Helge Krieg1
1Universität Münster Theoretische Organische Chemie, Organisch-Chemisches Institut, , Corrensstrasse 40, D-48149 Münster, Germany

Tóm tắt

The method of dispersion correction as an add-on to standard Kohn–Sham density functional theory (DFT-D) has been refined regarding higher accuracy, broader range of applicability, and less empiricism. The main new ingredients are atom-pairwise specific dispersion coefficients and cutoff radii that are both computed from first principles. The coefficients for new eighth-order dispersion terms are computed using established recursion relations. System (geometry) dependent information is used for the first time in a DFT-D type approach by employing the new concept of fractional coordination numbers (CN). They are used to interpolate between dispersion coefficients of atoms in different chemical environments. The method only requires adjustment of two global parameters for each density functional, is asymptotically exact for a gas of weakly interacting neutral atoms, and easily allows the computation of atomic forces. Three-body nonadditivity terms are considered. The method has been assessed on standard benchmark sets for inter- and intramolecular noncovalent interactions with a particular emphasis on a consistent description of light and heavy element systems. The mean absolute deviations for the S22 benchmark set of noncovalent interactions for 11 standard density functionals decrease by 15%–40% compared to the previous (already accurate) DFT-D version. Spectacular improvements are found for a tripeptide-folding model and all tested metallic systems. The rectification of the long-range behavior and the use of more accurate C6 coefficients also lead to a much better description of large (infinite) systems as shown for graphene sheets and the adsorption of benzene on an Ag(111) surface. For graphene it is found that the inclusion of three-body terms substantially (by about 10%) weakens the interlayer binding. We propose the revised DFT-D method as a general tool for the computation of the dispersion energy in molecules and solids of any kind with DFT and related (low-cost) electronic structure methods for large systems.

Từ khóa


Tài liệu tham khảo

1997, The Theory of Intermolecular Forces

2006, Intermolecular Interactions, 10.1002/047086334X

2007, Org. Biomol. Chem., 5, 741, 10.1039/b615319b

2009, J. Chem. Phys., 130, 124105, 10.1063/1.3079822

2009, J. Phys. Org. Chem., 22, 1127, 10.1002/poc.1606

2009, J. Chem. Phys., 131, 224104, 10.1063/1.3269802

2001, J. Chem. Phys., 114, 5149, 10.1063/1.1329889

2004, J. Comput. Chem., 25, 1463, 10.1002/jcc.20078

2007, J. Comput. Chem., 28, 555, 10.1002/jcc.20570

1996, Phys. Rev. Lett., 76, 102, 10.1103/PhysRevLett.76.102

2005, Int. J. Quantum Chem., 101, 599, 10.1002/qua.20315

2005, Mol. Phys., 103, 1151, 10.1080/00268970412331333474

2004, Phys. Rev. Lett., 93, 153004, 10.1103/PhysRevLett.93.153004

2008, J. Chem. Phys., 129, 154102, 10.1063/1.2992078

2008, Acc. Chem. Res., 41, 157, 10.1021/ar700111a

von Rague-Schleyer, 1998, Encyclopedia of Computational Chemisty, 1376, 10.1002/0470845015

2001, J. Phys. Chem. A, 105, 11156, 10.1021/jp0112774

2010, J. Chem. Theory Comput., 6, 168, 10.1021/ct9005882

2006, Phys. Chem. Chem. Phys., 8, 3955, 10.1039/b608262a

2010, J. Chem. Theory Comput., 6, 864, 10.1021/ct900536n

2010, J. Chem. Phys., 132, 094106, 10.1063/1.3336452

2009, Phys. Rev. Lett., 103, 063004, 10.1103/PhysRevLett.103.063004

2010, J. Phys.: Condens. Matter, 22, 022201, 10.1088/0953-8984/22/2/022201

2010, J. Chem. Theory Comput., 6, 81, 10.1021/ct900410j

2008, J. Chem. Theory Comput., 4, 1996, 10.1021/ct800308k

Lipkowitz, 2009, Reviews in Computational Chemistry, 1, 10.1002/9780470399545.ch1

Lipkowitz, 2009, Reviews in Computational Chemistry, 39, 10.1002/9780470399545.ch2

2009, Phys. Rev. Lett., 103, 263201, 10.1103/PhysRevLett.103.263201

1988, Phys. Rev. A, 38, 3098, 10.1103/PhysRevA.38.3098

1988, Phys. Rev. B, 37, 785, 10.1103/PhysRevB.37.785

1986, Phys. Rev. B, 33, 8822, 10.1103/PhysRevB.33.8822

1986, Phys. Rev. B, 34, 7406, 10.1103/PhysRevB.34.7406

1996, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865

1998, Phys. Rev. Lett., 80, 890, 10.1103/PhysRevLett.80.890

2006, J. Comput. Chem., 27, 1787, 10.1002/jcc.20495

2003, Phys. Rev. Lett., 91, 146401, 10.1103/PhysRevLett.91.146401

1993, J. Chem. Phys., 98, 5648, 10.1063/1.464913

1994, J. Phys. Chem., 98, 11623, 10.1021/j100096a001

1999, J. Chem. Phys., 110, 6158, 10.1063/1.478522

2005, J. Phys. Chem. A, 109, 5656, 10.1021/jp050536c

2006, J. Chem. Phys., 124, 034108, 10.1063/1.2148954

2005, J. Phys. Chem. A, 109, 3067, 10.1021/jp050036j

2005, J. Chem. Phys., 122, 154104, 10.1063/1.1884601

2005, J. Chem. Phys., 123, 154101, 10.1063/1.2065267

2009, Phys. Rev. Lett., 102, 073005, 10.1103/PhysRevLett.102.073005

2009, J. Math. Chem., 46, 86, 10.1007/s10910-008-9451-y

2006, J. Chem. Phys., 124, 014104, 10.1063/1.2139668

2006, J. Chem. Phys., 124, 174104, 10.1063/1.2190220

2005, J. Chem. Phys., 123, 024101, 10.1063/1.1949201

2006, Phys. Chem. Chem. Phys., 8, 1985, 10.1039/b600027d

2009, Phys. Rev. A, 79, 042510, 10.1103/PhysRevA.79.042510

2000, J. Chem. Phys., 113, 3011, 10.1063/1.1287055

2001, J. Chem. Phys., 115, 8748, 10.1063/1.1412004

2002, J. Chem. Phys., 116, 515, 10.1063/1.1424928

2004, J. Chem. Phys., 120, 2693, 10.1063/1.1637034

2008, J. Phys. Chem. A, 112, 9993, 10.1021/jp800974k

2009, J. Chem. Theory Comput., 5, 2950, 10.1021/ct9002509

2007, Phys. Chem. Chem. Phys., 9, 3397, 10.1039/b704725h

2009, Mater. Trans., 50, 1664, 10.2320/matertrans.MF200911

2008, Phys. Chem. Chem. Phys., 10, 6615, 10.1039/b810189b

2004, Chem.-Eur. J., 10, 3423, 10.1002/chem.200400091

2006, Angew. Chem., Int. Ed., 45, 4460, 10.1002/anie.200600448

1948, Phys. Rev., 73, 360, 10.1103/PhysRev.73.360

1999, J. Comput. Chem., 20, 12, 10.1002/(SICI)1096-987X(19990115)20:1&lt;12::AID-JCC4&gt;3.0.CO;2-U

2009, J. Chem. Phys., 131, 164708, 10.1063/1.3256238

1972, J. Chem. Phys., 56, 2801, 10.1063/1.1677610

1992, J. Chem. Phys., 97, 3252, 10.1063/1.463012

1984, J. Chem. Phys., 80, 3726, 10.1063/1.447150

2010, J. Chem. Phys., 132, 014110, 10.1063/1.3282265

2010, J. Chem. Phys., 132, 074301, 10.1063/1.3315418

2004, J. Phys. Chem. A, 108, 10225, 10.1021/jp047289h

1943, J. Chem. Phys., 11, 299, 10.1063/1.1723844

1943, Proc. Phys. Math. Soc. Jpn., 17, 629

2008, Phys. Rev. B, 78, 045116, 10.1103/PhysRevB.78.045116

2009, J. Phys. Chem. A, 113, 5806, 10.1021/jp8111556

2009, Chem.-Eur. J., 15, 186, 10.1002/chem.200800987

See supplementary material at http://dx.doi.org/10.1063/1.3382344 for optimized DFT-D3 parameter values for triple-zeta calculations, computational details, and details on the benchmark sets.

2009, Phys. Chem. Chem. Phys., 11, 10757, 10.1039/b907148b

2006, Phys. Rev. Lett., 96, 073201, 10.1103/PhysRevLett.96.073201

2009

2007, ORCA—An Ab Initio, Density Functional and Semiempirical Program Package

2006

2003, J. Chem. Phys., 119, 12753, 10.1063/1.1627293

2005, Phys. Chem. Chem. Phys., 7, 3297, 10.1039/b508541a

1994, J. Chem. Phys., 100, 5829, 10.1063/1.467146

2000, J. Chem. Phys., 113, 2563, 10.1063/1.1305880

2003, J. Chem. Phys., 119, 11113, 10.1063/1.1622924

1993, Chem. Phys. Lett., 213, 514, 10.1016/0009-2614(93)89151-7

2002, Phys. Chem. Chem. Phys., 4, 4285, 10.1039/b204199p

1997, Theor. Chem. Acc., 97, 331, 10.1007/s002140050269

1998, Chem. Phys. Lett., 294, 143, 10.1016/S0009-2614(98)00862-8

1995, Chem. Phys. Lett., 240, 283, 10.1016/0009-2614(95)00621-A

2007, Theor. Chem. Acc., 117, 587, 10.1007/s00214-007-0250-5

Olivucci, 2005, Theoretical and Computational Chemistry

2009, J. Chem. Theory Comput., 5, 1761, 10.1021/ct900126q

1999, Mol. Phys., 96, 559, 10.1080/00268979909482993

2010, J. Chem. Theory Comput., 6, 107, 10.1021/ct900489g

2006, J. Chem. Phys., 124, 114304, 10.1063/1.2178795

2005, Phys. Chem. Chem. Phys., 7, 3917, 10.1039/b509242f

1998, Int. J. Quantum Chem., 66, 131, 10.1002/(SICI)1097-461X(1998)66:2&lt;131::AID-QUA4&gt;3.0.CO;2-W

2007, J. Phys. Chem. C, 111, 11199, 10.1021/jp0720791

2007, Mol. Phys., 105, 2793, 10.1080/00268970701635543

2007, J. Am. Chem. Soc., 129, 3842, 10.1021/ja070616p

2008, Acc. Chem. Res., 41, 569, 10.1021/ar700208h

2009, Phys. Chem. Chem. Phys., 11, 8440, 10.1039/b907260h

2009, J. Chem. Phys., 131, 174105, 10.1063/1.3244209

2008, J. Phys. Chem. C, 112, 4061, 10.1021/jp710918f

2009, J. Chem. Theory Comput., 5, 993, 10.1021/ct800511q

2007, J. Phys. Chem. A, 111, 4862, 10.1021/jp070589p

2009, Phys. Rev. B, 79, 201105, 10.1103/PhysRevB.79.201105

2005, Chem.-Eur. J., 11, 6803, 10.1002/chem.200500465

2007, J. Phys. Chem. A, 111, 1146, 10.1021/jp066504m

2004, Phys. Rev. B, 69, 155406, 10.1103/PhysRevB.69.155406

2007, Phys. Rev. B, 76, 155425, 10.1103/PhysRevB.76.155425

2006, Phys. Rev. B, 74, 235401, 10.1103/PhysRevB.74.235401

2009, J. Comput. Chem., 30, 51, 10.1002/jcc.21022

2008, Phys. Chem. Chem. Phys., 10, 2813, 10.1039/b717744e

2008, J. Chem. Phys., 129, 204112, 10.1063/1.3021474

2009, J. Phys. Chem. A, 113, 13628, 10.1021/jp906086x

2000, J. Phys. Chem. A, 104, 11414, 10.1021/jp002631l

2005, J. Phys. Chem. A, 109, 11015, 10.1021/jp053905d

2006, J. Phys. Chem. B, 110, 19973, 10.1021/jp062225n

2008, Phys. Chem. Chem. Phys., 10, 3327, 10.1039/b803508c