Removal of Sb(III) and Sb(V) from Aqueous Solutions Using nZVI
Tóm tắt
Từ khóa
Tài liệu tham khảo
An, Y.-J., & Kim, M. (2009). Effect of antimony on the microbial growth and the activities of soil enzymes. Chemosphere, 74(5), 654–659.
Catalano, J. G., Fenter, P., Park, C., Zhang, Z., & Rosso, K. M. (2010). Structure and oxidation state of hematite surfaces reacted with aqueous Fe(II) at acidic and neutral pH. Geochimica et Cosmochimica Acta, 74(5), 1498–1512. doi: 10.1016/j.gca.2009.12.018 .
Chen, J., Xiu, Z., Lowry, G. V., & Alvarez, P. J. (2011). Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron. Water Research, 45(5), 1995–2001.
Crane, R., & Scott, T. (2011). Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. Journal of Hazardous Materials.
Crane, R. A., & Scott, T. B. (2012). Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. Journal of Hazardous Materials, 211, 112–125. doi: 10.1016/j.jhazmat.2011.11.073 .
Devlin, J., & Allin, K. (2005). Major anion effects on the kinetics and reactivity of granular iron in glass-encased magnet batch reactor experiments. Environmental Science & Technology, 39(6), 1868–1874.
Diegoli, S., Manciulea, A. L., Begum, S., Jones, I. P., Lead, J. R., & Preece, J. A. (2008). Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules. Science of the Total Environment, 402(1), 51–61.
Dong, H., & Lo, I. (2013). Influence of humic acid on the colloidal stability of surface-modified nano zero-valent iron. Water Research, 47, 419–427.
Dong, H. R., Guan, X. H., & Lo, I. M. C. (2012). Fate of As(V)-treated nano zero-valent iron: determination of arsenic desorption potential under varying environmental conditions by phosphate extraction. [Article]. Water Research, 46(13), 4071–4080. doi: 10.1016/j.watres.2012.05.015 .
Efecan, N., Shahwan, T., Eroğlu, A. E., & Lieberwirth, I. (2009). Characterization of the uptake of aqueous Ni2+ ions on nanoparticles of zero-valent iron (nZVI). Desalination, 249(3), 1048–1054.
Filella, M., Belzile, N., & Chen, Y. W. (2002a). Antimony in the environment: a review focused on natural waters I. Occurrence. Earth-Science Reviews, 57(1–2), 125–176. doi: 10.1016/s0012-8252(01)00070-8 .
Filella, M., Belzile, N., & Chen, Y. W. (2002b). Antimony in the environment: a review focused on natural waters II. Relevant solution chemistry. [Review]. Earth-Science Reviews, 59(1–4), 265–285. doi: 10.1016/s0012-8252(02)00089-2 .
Giasuddin, A. B. M., Kanel, S. R., & Choi, H. (2007). Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal. Environmental Science & Technology, 41(6), 2022–2027. doi: 10.1021/es0616534 .
Gungor, E. B. O., & Bekbolet, M. (2010). Zinc release by humic and fulvic acid as influenced by pH, complexation and DOC sorption. [Article]. Geoderma, 159(1–2), 131–138. doi: 10.1016/j.geoderma.2010.07.004 .
He, M. C., Wang, X. Q., Wu, F. C., & Fu, Z. Y. (2012). Antimony pollution in China. [Review]. Science of the Total Environment, 421, 41–50. doi: 10.1016/j.scitotenv.2011.06.009 .
Joo, S. H., Feitz, A. J., Sedlak, D. L., & Waite, T. D. (2005). Quantification of the oxidizing capacity of nanoparticulate zero-valent iron. Environmental Science & Technology, 39(5), 1263–1268. doi: 10.1021/es048983d .
Kameda, T., Nakamura, M., & Yoshioka, T. (2012a). Removal of antimonate ions from an aqueous solution by anion exchange with magnesium-aluminum layered double hydroxide and the formation of a brandholzite-like structure. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering, 47(8), 1146–1151. doi: 10.1080/10934529.2012.668121 .
Kameda, T., Nakamura, M., & Yoshioka, T. (2012b). Removal of antimonate ions from aqueous solution using copper–aluminum layered double hydroxide. Fresenius Environmental Bulletin, 21(5A), 1323–1328.
Kanel, S. R., Manning, B., Charlet, L., & Choi, H. (2005). Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environmental Science & Technology, 39(5), 1291–1298. doi: 10.1021/es048991u .
Kanel, S. R., Greneche, J. M., & Choi, H. (2006). Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environmental Science & Technology, 40(6), 2045–2050. doi: 10.1021/es0520924 .
Klausen, J., Ranke, J., & Schwarzenbach, R. P. (2001). Influence of solution composition and column aging on the reduction of nitroaromatic compounds by zero-valent iron. Chemosphere, 44(4), 511–517.
Li, X.-Q., & Zhang, W.-X. (2006a). Iron nanoparticles: the core–shell structure and unique properties for Ni (II) sequestration. Langmuir, 22(10), 4638–4642.
Li, X., & Zhang, W. (2006b). Iron nanoparticles: the core–shell structure and unique properties for Ni (II) sequestration. Langmuir, 22(10), 4638–4642.
Li, X. Q., & Zhang, W. X. (2007). Sequestration of metal cations with zerovalent iron nanoparticles—a study with high resolution X-ray photoelectron spectroscopy (HR-XPS). Journal of Physical Chemistry C, 111(19), 6939–6946. doi: 10.1021/jp0702189 .
Li, X. Q., Elliott, D. W., & Zhang, W. X. (2006). Zero-valent iron nanoparticles for abatement of environmental pollutants: Materials and engineering aspects. [Review]. Critical Reviews in Solid State and Materials Sciences, 31(4), 111–122. doi: 10.1080/10408430601057611 .
Lipczynska-Kochany, E., Harms, S., Milburn, R., Sprah, G., & Nadarajah, N. (1994). Degradation of carbon tetrachloride in the presence of iron and sulphur containing compounds. Chemosphere, 29(7), 1477–1489.
Littera, P., Urik, M., Gardogova, K., & Kolencik, M. (2012). Beech sawdust: a potential biosorbent for antimony(III) removal. Fresenius Environmental Bulletin, 21(5), 1066–1072.
Liu, Y., & Lowry, G. V. (2006). Effect of particle age (Fe0 content) and solution pH on NZVI reactivity: H2 evolution and TCE dechlorination. Environmental Science & Technology, 40(19), 6085–6090.
Manning, B. A., Hunt, M. L., Amrhein, C., & Yarmoff, J. A. (2002). Arsenic (III) and arsenic (V) reactions with zerovalent iron corrosion products. Environmental Science & Technology, 36(24), 5455–5461.
Nurmi, J. T., Tratnyek, P. G., Sarathy, V., Baer, D. R., Amonette, J. E., Pecher, K., et al. (2005). Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environmental Science & Technology, 39(5), 1221–1230.
Ramos, M. A., Yan, W., Li, X.-Q., Koel, B. E., & Zhang, W.-X. (2009a). Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: understanding the significance of the core–shell structure. Journal of Physical Chemistry C, 113(33), 14591–14594.
Ramos, M. A. V., Yan, W., Li, X., Koel, B. E., & Zhang, W. (2009b). Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: understanding the significance of the core–shell structure. Journal of Physical Chemistry C, 113(33), 14591–14594.
Ramos, M. A. V., Yan, W., Li, X. Q., Koel, B. E., & Zhang, W. X. (2009c). Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: understanding the significance of the core-shell structure. Journal of Physical Chemistry C, 113(33), 14591–14594. doi: 10.1021/jp9051837 .
Redman, A. D., Macalady, D. L., & Ahmann, D. (2002). Natural organic matter affects arsenic speciation and sorption onto hematite. Environmental Science & Technology, 36(13), 2889–2896.
Reinsch, B. C., Forsberg, B., Penn, R. L., Kim, C. S., & Lowry, G. V. (2010). Chemical transformations during aging of zerovalent iron nanoparticles in the presence of common groundwater dissolved constituents. Environmental Science & Technology, 44(9), 3455–3461.
Ritter, K., Odziemkowski, M., Simpgraga, R., Gillham, R., & Irish, D. (2003). An in situ study of the effect of nitrate on the reduction of trichloroethylene by granular iron. Journal of Contaminant Hydrology, 65(1), 121–136.
Schlicker, O., Ebert, M., Fruth, M., Weidner, M., Wüst, W., & Dahmke, A. (2005). Degradation of TCE with iron: the role of competing chromate and nitrate reduction. Ground Water, 38(3), 403–409.
Smith, K. S. (1999). Metal sorption on mineral surfaces: an overview with examples relating to mineral deposits. The Environmental Geochemistry of Mineral Deposits Part A: Processes, Techniques, and Health Issues: Colorado, Society of Economic Geologists, Reviews in Economic Geology A, 6, 161–182.
Subramaniam, K., Yiacoumi, S., & Tsouris, C. (2001). Copper uptake by inorganic particles - equilibrium, kinetics, and particle interactions: experimental. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 177(2–3), 133–146.
Walsch, J., & Dultz, S. (2010). Effects of pH, Ca- and SO4-concentration on surface charge and colloidal stability of goethite and hematite—consequences for the adsorption of anionic organic substances. Clay Minerals, 45(1), 1–13. doi: 10.1180/claymin.2010.045.1.01 .
Winship, K. (1987). Toxicity of antimony and its compounds. Adverse Drug Reactions and Acute Poisoning Reviews, 6(2), 67.
Xie, Y., & Cwiertny, D. M. (2012a). Influence of anionic cosolutes and pH on nanoscale zerovalent iron longevity: time scales and mechanisms of reactivity loss toward 1,1,1,2-tetrachloroethane and Cr(VI). Environmental Science & Technology, 46(15), 8365–8373. doi: 10.1021/es301753u .
Xie, Y., & Cwiertny, D. M. (2012b). Influence of anionic cosolutes and pH on nanoscale zerovalent iron longevity: time scales and mechanisms of reactivity loss toward 1,1,1,2-tetrachloroethane and Cr(VI). Environmental Science & Technology, 46(15), 8365–8373.
Yan, W., Herzing, A. A., Kiely, C. J., & Zhang, W.-X. (2010a). Nanoscale zero-valent iron (nZVI): aspects of the core–shell structure and reactions with inorganic species in water. Journal of Contaminant Hydrology, 118(3), 96–104.
Yan, W. L., Herzing, A. A., Kiely, C. J., & Zhang, W. X. (2010b). Nanoscale zero-valent iron (nZVI): aspects of the core–shell structure and reactions with inorganic species in water. Journal of Contaminant Hydrology, 118(3–4), 96–104. doi: 10.1016/j.jconhyd.2010.09.003 .
Yan, W., Ramos, M. A., Koel, B. E., & Zhang, W.-X. (2012). As (III) Sequestration by iron nanoparticles: study of solid-phase redox transformations with X-ray photoelectron spectroscopy. Journal of Physical Chemistry C, 116(9), 5303–5311.