Coagulated SnO2 Colloids for High‐Performance Planar Perovskite Solar Cells with Negligible Hysteresis and Improved Stability

Angewandte Chemie - Tập 131 Số 33 - Trang 11621-11628 - 2019
Zhongze Liu1, Kaimo Deng1, Jun Hu1, Liang Li1
1School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou, 215006 P. R. China

Tóm tắt

AbstractOrganic–inorganic perovskite solar cells with a planar architecture have attracted much attention due to the simple structure and easy fabrication. However, the power conversion efficiency and hysteresis behavior need to be improved for planar‐type devices where the electron transport layer is vital. SnO2 is a promising alternative for TiO2 as the electron transport layer owing to the high charge mobility and chemical stability, but the hysteresis issue can still remain despite the use of SnO2. Now, a facile and effective method is presented to simultaneously tune the electronic property of SnO2 and passivate the defects at the interface between the perovskite and SnO2. The perovskite solar cells with ammonium chloride induced coagulated SnO2 colloids exhibit a power conversion efficiency of 21.38 % with negligible hysteresis, compared to 18.71 % with obvious hysteresis for the reference device. The device stability can also be significantly improved.

Từ khóa


Tài liệu tham khảo

10.1021/ja809598r

10.1126/science.1228604

10.1038/nature12509

10.1126/science.1254050

10.1126/science.aaa9272

10.1126/science.aaa5760

10.1126/science.aaf8060

10.1038/s41560-018-0200-6

https://www.nrel.gov/pv/assets/pdfs/pv-efficiency-chart.20190103.pdf.

10.1038/ncomms10379

10.1126/science.aai9081

10.1016/j.nanoen.2016.11.028

10.1002/aenm.201700677

10.1002/adma.201806095

10.1002/advs.201700614

10.1039/C4EE03664F

10.1002/aenm.201702235

10.1002/aenm.201801717

10.1002/aenm.201800794

10.1021/acsenergylett.7b00888

10.1002/smll.201801154

10.1038/nenergy.2016.177

10.1021/jacs.5b01994

Zhao X., 2018, Nano Lett., 18, 2422

10.1002/aenm.201800138

10.1039/C8EE02242A

10.1038/s41467-018-07099-9

10.1038/s41467-018-05760-x

10.1002/adma.201805153

10.1016/j.nanoen.2018.11.068

10.1038/nenergy.2017.102

10.1021/la802096v

10.1002/app.29015

10.1039/C6EE02139E

10.1002/adma.201703852

10.1021/acsenergylett.8b01627

10.1088/0965-0393/1/1/004

10.1063/1.1646460

10.1063/1.4864778

10.1021/nl502612m

10.1002/aenm.201800438

10.1039/C8EE00580J

10.1002/aenm.201501534

10.1016/j.nanoen.2016.06.041