Missing-in-metastasis and IRSp53 deform PI(4,5)P2-rich membranes by an inverse BAR domain–like mechanism

Journal of Cell Biology - Tập 176 Số 7 - Trang 953-964 - 2007
Pieta K. Mattila1, Anette Pykäläinen1, Juha Saarikangas1, Ville O. Paavilainen1, Helena Vihinen1, Eija Jokitalo1, Pekka Lappalainen1
1Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland

Tóm tắt

The actin cytoskeleton plays a fundamental role in various motile and morphogenetic processes involving membrane dynamics. We show that actin-binding proteins MIM (missing-in-metastasis) and IRSp53 directly bind PI(4,5)P2-rich membranes and deform them into tubular structures. This activity resides in the N-terminal IRSp53/MIM domain (IMD) of these proteins, which is structurally related to membrane-tubulating BAR (Bin/amphiphysin/Rvs) domains. We found that because of a difference in the geometry of the PI(4,5)P2-binding site, IMDs induce a membrane curvature opposite that of BAR domains and deform membranes by binding to the interior of the tubule. This explains why IMD proteins induce plasma membrane protrusions rather than invaginations. We also provide evidence that the membrane-deforming activity of IMDs, instead of the previously proposed F-actin–bundling or GTPase-binding activities, is critical for the induction of the filopodia/microspikes in cultured mammalian cells. Together, these data reveal that interplay between actin dynamics and a novel membrane-deformation activity promotes cell motility and morphogenesis.

Từ khóa


Tài liệu tham khảo

2005, J. Cell Sci., 118, 5393, 10.1242/jcs.02640

2004, Genes Dev., 18, 2724, 10.1101/gad.1221804

2005, J. Neurosci., 25, 869, 10.1523/JNEUROSCI.3212-04.2005

2006, EMBO J., 25, 2898, 10.1038/sj.emboj.7601174

2005, J. Cell Biol., 168, 453, 10.1083/jcb.200409078

2004, Cell., 118, 203, 10.1016/j.cell.2004.06.027

2006, J. Cell Biol., 173, 383, 10.1083/jcb.200511093

2005, Nat. Cell Biol., 7, 969, 10.1038/ncb1304

2006, Biochim. Biophys. Acta., 1761, 897, 10.1016/j.bbalip.2006.06.015

2005, Dev. Cell., 9, 791, 10.1016/j.devcel.2005.11.005

2003, J. Mol. Biol., 328, 791, 10.1016/S0022-2836(03)00322-X

2005, Cell., 123, 305, 10.1016/j.cell.2005.09.024

2006, Nat. Rev. Mol. Cell Biol., 7, 404, 10.1038/nrm1940

1996, J. Struct. Biol., 116, 71, 10.1006/jsbi.1996.0013

2001, Curr. Biol., 11, 1645, 10.1016/S0960-9822(01)00506-1

1997, EMBO J., 16, 5520, 10.1093/emboj/16.18.5520

2007, Structure., 15, 145, 10.1016/j.str.2006.12.005

2002, Neoplasia., 4, 291, 10.1038/sj.neo.7900231

2005, Oncogene., 24, 2059, 10.1038/sj.onc.1208412

2005, Int. J. Oncol., 26, 1699

1997, J. Struct. Biol., 120, 343, 10.1006/jsbi.1997.3919

2006, EMBO J., 25, 2889, 10.1038/sj.emboj.7601176

2003, J. Biol. Chem., 278, 8452, 10.1074/jbc.M212113200

2004, Mol. Biol. Cell., 15, 5158, 10.1091/mbc.e04-06-0444

2000, Nature., 408, 732, 10.1038/35047107

2005, EMBO J., 24, 240, 10.1038/sj.emboj.7600535

2003, J. Cell Sci., 116, 2577, 10.1242/jcs.00462

2001, J. Cell Biol., 155, 251, 10.1083/jcb.200106157

2005, Mol. Cell., 17, 181, 10.1016/j.molcel.2004.11.054

1982, Methods Enzymol., 85, 164, 10.1016/0076-6879(82)85020-9

1996, Anal. Biochem., 236, 371, 10.1006/abio.1996.0187

2004, Science., 303, 495, 10.1126/science.1092586

2003, Cell., 112, 453, 10.1016/S0092-8674(03)00120-X

1999, Mol. Biol. Cell., 10, 501, 10.1091/mbc.10.2.501

1999, J. Biol. Chem., 274, 8347, 10.1074/jbc.274.13.8347

2003, J. Biol. Chem., 278, 49031, 10.1074/jbc.M308104200

2006, J. Cell Biol., 173, 571, 10.1083/jcb.200509067

2006, J. Biol. Chem., 281, 35347, 10.1074/jbc.M606814200

1999, Nat. Cell Biol., 1, 33, 10.1038/9004

2006, J. Cell Biol., 172, 269, 10.1083/jcb.200508091

2000, Mol. Cell. Biol., 20, 1772, 10.1128/MCB.20.5.1772-1783.2000

2003, Curr. Biol., 13, 1531, 10.1016/S0960-9822(03)00559-1

2003, Biochem. J., 371, 463, 10.1042/bj20021962

2004, J. Biol. Chem., 279, 14929, 10.1074/jbc.M309408200

2000, EMBO J., 19, 6331, 10.1093/emboj/19.23.6331

2001, Nat. Cell Biol., 3, 922, 10.1038/ncb1001-922