Comparative metabolism as a key driver of wildlife species sensitivity to human and veterinary pharmaceuticals

Thomas H. Hutchinson1, Judith C. Madden2, Vinny Naidoo3, C.H. Walker4
1School of Biological Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
2School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
3Departmental of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Gauteng 0110, South Africa
4Cissbury, Hillhead, Colyton EX24 6NJ, UK

Tóm tắt

Human and veterinary drug development addresses absorption, distribution, metabolism, elimination and toxicology (ADMET) of the Active Pharmaceutical Ingredient (API) in the target species. Metabolism is an important factor in controlling circulating plasma and target tissue API concentrations and in generating metabolites which are more easily eliminated in bile, faeces and urine. The essential purpose of xenobiotic metabolism is to convert lipid-soluble, non-polar and non-excretable chemicals into water soluble, polar molecules that are readily excreted. Xenobiotic metabolism is classified into Phase I enzymatic reactions (which add or expose reactive functional groups on xenobiotic molecules), Phase II reactions (resulting in xenobiotic conjugation with large water-soluble, polar molecules) and Phase III cellular efflux transport processes. The human–fish plasma model provides a useful approach to understanding the pharmacokinetics of APIs (e.g. diclofenac, ibuprofen and propranolol) in freshwater fish, where gill and liver metabolism of APIs have been shown to be of importance. By contrast, wildlife species with low metabolic competency may exhibit zero-order metabolic (pharmacokinetic) profiles and thus high API toxicity, as in the case of diclofenac and the dramatic decline of vulture populations across the Indian subcontinent. A similar threat looms for African Cape Griffon vultures exposed to ketoprofen and meloxicam, recent studies indicating toxicity relates to zero-order metabolism (suggesting P450 Phase I enzyme system or Phase II glucuronidation deficiencies). While all aspects of ADMET are important in toxicity evaluations, these observations demonstrate the importance of methods for predicting API comparative metabolism as a central part of environmental risk assessment.

Từ khóa


Tài liệu tham khảo

10.1007/s11095-006-9217-9

10.1098/rstb.2014.0022

10.1159/000137327

10.3109/03602538708998312

10.1007/BF02977789

10.1038/nrd2468

Lewis DFV, 1996, Cytochromes P450: structure, function and mechanism, 348, 10.1201/9781482272772

10.1098/rstb.2012.0474

10.1111/j.1558-5646.1964.tb01674.x

10.1016/0168-9525(90)90174-5

Harborne JB, 1993, Introduction to ecological biochemistry, 4

Nelson DR, 1998, Metazoan cytochrome P450 evolution, Comp. Biochem. Physiol., 121, 15

Ronis MJJ, 1989, The microsomal monooxygenases of birds, Rev. Biochem. Toxicol., 10, 301

Walker CH, 2012, Principles of ecotoxicology, 4

10.1016/j.toxlet.2013.08.009

10.3109/03602537808993770

Walker CH, 1980, Species differences in some hepatic microsomal enzymes that metabolise xenobiotics, Prog. Drug Metab., 5, 118

Walker CH, 1981, Progress in pesticide biochemistry, 287

10.1371/journal.pone.0018046

10.1016/j.cvsm.2013.05.002

10.1002/1522-2632(200008)85:4<413::AID-IROH413>3.0.CO;2-3

10.1098/rstb.2014.0058

10.1016/S0045-6535(98)00124-6

10.3109/00498258909043161

10.1016/S1095-6433(98)10008-9

10.1016/S0166-445X(00)00085-0

Buhler DR, 1998, Rainbow trout cytochrome P450s: purification, molecular aspects, metabolic activity, induction and role in environmental monitoring, Comp. Biochem. Physiol., 121, 107

Celander M, 1993, Induction of cytochrome P450 1A1 and conjugating enzymes in rainbow trout (Oncorhynchus mykiss) liver: a time course study, Comp. Biochem. Physiol. A, 106, 343

Solé M, 2009, Xenobiotic metabolism markers in marine fish with different trophic strategies and their relationship to ecological variables, Comp. Biochem. Physiol. C, 149, 83

10.1897/08-058.1

10.1016/j.chemosphere.2010.09.043

10.1186/1476-5926-4-2

10.1016/j.aquatox.2007.11.006

10.1897/03-155

10.1016/j.tox.2009.04.014

10.1016/j.aquatox.2009.05.009

10.1016/j.chemosphere.2010.01.058

10.1016/j.tiv.2008.02.020

10.1002/tox.20684

10.1016/j.tiv.2012.10.002

10.1021/tx300457f

10.1016/j.tvjl.2007.07.011

10.1016/j.aquatox.2012.10.008

Parkinson A, 1996, Casarett and Doull's toxicology, the basic science of poisons, unit 2, 133

10.1080/08998280.2000.11927719

10.1093/nar/gkj067

10.1080/00498250400003455

10.1080/714044797

10.1016/j.yrtph.2011.08.006

10.1016/j.jhazmat.2012.10.023

10.1021/ci200542m

Obach RS, 1997, The prediction of human pharmacokinetics parameters from preclinical and in vitro metabolism data, J. Pharmacol. Exp. Ther., 283, 46

10.1080/10408440500534362

10.1016/0041-008X(90)90338-U

10.1098/rsbl.2004.0223

10.1111/j.1469-1795.2006.00041.x

10.1098/rstb.2013.0574

10.1098/rsbl.2005.0425

10.1016/j.etap.2007.06.003

10.1016/j.yrtph.2009.01.010

10.7589/0090-3558-47.4.936

10.1111/j.1365-2885.2007.00923.x

10.1098/rsbl.2009.0818

10.1007/s00204-010-0521-0

Walsh CT, 2004, Levine's pharmacology: drug actions and reactions, 7, 561, 10.3109/9780203005798

10.1124/dmd.104.003095

10.1007/s00228-008-0508-4

10.2174/092986709789057635

Grosser T, 2011, Goodman and Gilman's the pharmacological basis of therapeutics, 11, 959

10.1016/S0006-2952(99)00167-7

10.1073/pnas.0609568104

10.1098/rstb.2013.0576

10.1289/ehp.99107s6907

Schmitt H, 2010, Recommendations on the environmental risk assessment of pharmaceuticals: effect characterization, Int. Environ. Assess. Manag., 6, 588, 10.1897/IEAM_2009-053.1

Küster A, 2010, Environmental risk assessment of human pharmaceuticals in the European Union: a case study with the beta-blocker atenolol, Int. Environ. Assess. Manag., 6, 514, 10.1897/IEAM_2009-050.1

10.1289/ehp.1104477

10.1016/j.envint.2007.02.010

Verbrugge LA, 2001, Catalytic and immunochemical properties of hepatic cytochrome P450 1A in three avian species treated with beta-naphthoflavone or isosafrole, Comp. Biochem. Physiol. C, 130, 67

Kubota A, 2009, Alkoxyresorufin (methoxy-, ethoxy-, pentoxy- and benzyloxyresorufin) O-dealkylase activities by in vitro-expressed cytochrome P450 1A4 and 1A5 from common cormorant (Phalacrocorax carbo), Comp. Biochem. Physiol. C, 149, 544

10.1046/j.1365-294X.2003.01913.x

10.1016/j.marpolbul.2013.06.012

10.1002/etc.382

10.1016/j.yrtph.2012.02.013

10.1186/gb-2010-11-11-r115

10.1002/ieam.1268

10.1098/rstb.2013.0570