Computing Extreme Eigenvalues of Large Scale Hankel Tensors
Tóm tắt
Từ khóa
Tài liệu tham khảo
Attouch, H., Bolte, J.: On the convergence of the proximal algorithm for nonsmooth functions involving analytic features. Math. Program. Ser. B 116, 5–16 (2009)
Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka–Łojasiewicz inequality. Math. Oper. Res. 35, 438–457 (2010)
Bader, B., Kolda, T.: Efficient MATLAB computations with sparse and factored tensors. SIAM J. Sci. Comput. 30, 205–231 (2007)
Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA J. Numer. Anal. 8, 141–148 (1988)
Bolte, J., Daniilidis, A., Lewis, A.: The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. Optim. 17, 1205–1223 (2006)
Boyer, R., De Lathauwer, L., Abed-Meraim, K.: Higher order tensor-based method for delayed exponential fitting. IEEE Trans. Signal Process. 55, 2795–2809 (2007)
Chang, K.C., Pearson, K., Zhang, T.: On eigenvalue problems of real symmetric tensors. J. Math. Anal. Appl. 350, 416–422 (2009)
Chen, L., Han, L., Zhou, L.: Computing tensor eigenvalues via homotopy methods, (2015). arXiv:1501.04201v3
Chen, Y., Dai, Y., Han, D., Sun, W.: Positive semidefinite generalized diffusion tensor imaging via quadratic semidefinite programming. SIAM J. Imaging Sci. 6, 1531–1552 (2013)
Chen, Y., Qi, L., Wang, Q.: Positive semi-definiteness and sum-of-squares property of fourth order four dimensional Hankel tensors, (2015). arXiv:1502.04566v8
Choi, J.H., Vishwanathan, S.V.N.: DFacTo: distributed factorization of tensors, (2014). arXiv:1406.4519v1
Cichocki, A., Phan, A.-H.: Fast local algorithms for large scale nonnegative matrix and tensor factorizations. IEICE Trans. Fund. Electron. E92–A, 708–721 (2009)
Cui, C., Dai, Y., Nie, J.: All real eigenvalues of symmetric tensors. SIAM J. Matrix Anal. Appl. 35, 1582–1601 (2014)
Dai, Y.: A positive BB-like stepsize and an extension for symmetric linear systems, In: Workshop on Optimization for Modern Computation, Beijing, China, (2014), http://bicmr.pku.edu.cn/conference/opt-2014/slides/Yuhong-Dai
de Almeida, A.L.F., Kibangou, A.Y.: Distributed large-scale tensor decomposition, In: IEEE International Conference on Acoustics, Speech and Siganl Processing (ICASSP) (2014) 26–30
De Lathauwer, L., De Moor, B., Vandewalle, J.: On the best rank- $$1$$ 1 and rank- $$(R_1, R_2,\ldots, R_N)$$ ( R 1 , R 2 , … , R N ) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21, 1324–1342 (2000)
Ding, W., Qi, L., Wei, Y.: Fast Hankel tensor-vector product and its application to exponential data fitting. Numer. Linear Algebra Appl. 22, 814–832 (2015)
Ding, W., Wei, Y.: Generalized tensor eigenvalue problems. SIAM J. Matrix Anal. Appl. 36, 1073–1099 (2015)
Friedland, S., Nocedal, J., Overton, M.L.: The formulation and analysis of numerical methods for inverse eigenvalue problems. SIAM J. Numer. Anal. 24, 634–667 (1987)
Goldfarb, D., Wen, Z., Yin, W.: A curvilinear search method for the $$p$$ p -harmonic flow on spheres. SIAM J. Imaging Sci. 2, 84–109 (2009)
Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. The Johns Hopkins University Press, Baltimore (2013). ISBN 978-1-4214-0794-4
Han, L.: An unconstrained optimization approach for finding real eigenvalues of even order symmetric tensors. Numer. Algebra Control Optim. 3, 583–599 (2013)
Hao, C., Cui, C., Dai, Y.: A sequential subspace projection method for extreme Z-eigenvalues of supersymmetric tensors. Numer. Linear Algebra Appl. 22, 283–298 (2015)
Hao, C., Cui, C., Dai, Y.: A feasible trust-region method for calculating extreme Z-eigenvalues of symmetric tensors, Pacific J. Optim. 11, 291–307 (2015)
Hu, S., Huang, Z., Qi, L.: Finding the extreme Z-eigenvalues of tensors via a sequential SDPs method. Numer. Linear Algebra Appl. 20, 972–984 (2013)
Kang, U., Papalexakis, E., Harpale, A., Faloutsos, C.: GigaTensor: scaling tensor analysis up by 100 times—algorithms and discoveries, In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 316–324 (2012)
Kofidis, E., Regalia, P.A.: On the best rank- $$1$$ 1 approximation of higher-order supersymmetric tensors. SIAM J. Matrix Anal. Appl. 23, 863–884 (2002)
Kolda, T.G., Mayo, J.R.: Shifted power method for computing tensor eigenpairs. SIAM J. Matrix Anal. Appl. 32, 1095–1124 (2011)
Kolda, T.G., Mayo, J.R.: An adaptive shifted power method for computing generalized tensor eigenpairs. SIAM J. Matrix Anal. Appl. 35, 1563–1581 (2014)
Lim, L.-H.: Singular values and eigenvalues of tensors: a variational approach, In: Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP’05), 1: 129–132 (2005)
Łojasiewicz, S.: Une propriété topologique des sous-ensembles analytiques réels, Les Équations aux Dérivées Partielles, Éditions du centre National de la Recherche Scientifique, Paris, 87–89 (1963)
Luque, J.-G., Thibon, J.-Y.: Hankel hyperdeterminants and Selberg integrals. J. Phys. A 36, 5267–5292 (2003)
McAuley, J., Leskovec, J.: Hidden factors and hidden topics: understanding rating dimensions with review text, In: Proceeding of the 7th ACM Conference on Recommender Systems, 165–172 (2013)
Ni, G., Qi, L., Bai, M.: Geometric measure of entanglement and U-eigenvalues of tensors. SIAM J. Matrix Anal. Appl. 35, 73–87 (2014)
Ni, Q., Qi, L., Wang, F.: An eigenvalue method for testing positive definiteness of a multivariate form. IEEE Trans. Automat. Control 53, 1096–1107 (2008)
Nie, J., Wang, L.: Semidefinite relaxations for best rank-1 tensor approximations. SIAM J. Matrix Anal. Appl. 35, 1155–1179 (2014)
Oropeza, V., Sacchi, M.: Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis. Geophysics 76, V25–V32 (2011)
Papy, J.M., De Lathauwer, L., Van Huffel, S.: Exponential data fitting using multilinear algebra: the single-channel and multi-channel case. Numer. Linear Algebra Appl. 12, 809–826 (2005)
Papy, J.M., De Lathauwer, L., Van Huffel, S.: Exponential data fitting using multilinear algebra: the decimative case. J. Chemom. 23, 341–351 (2009)
Qi, L.: Hankel tensors: associated Hankel matrices and Vandermonde decomposition. Commun. Math. Sci. 13, 113–125 (2015)
Qi, L., Wang, F., Wang, Y.: Z-eigenvalue methods for a global polynomial optimization problem. Math. Program. Ser. A 118, 301–316 (2009)
Qi, L., Yu, G., Xu, Y.: Nonnegative diffusion orientation distribution function. J. Math. Imaging Vis. 45, 103–113 (2013)
Schatz, M.D., Low, T.-M., Van De Geijn, R.A., Kolda, T.G.: Exploiting symmetry in tensors for high performance. SIAM J. Sci. Comput. 36, C453–C479 (2014)
Schultz, T., Seidel, H.-P.: Estimating crossing fibers: a tensor decomposition approach. IEEE Trans. Vis. Comput. Gr. 14, 1635–1642 (2008)
Smith, R.S.: Frequency domain subspace identification using nuclear norm minimization and Hankel matrix realizations. IEEE Trans. Automat. Control 59, 2886–2896 (2014)
Song, Y., Qi, L.: Infinite and finite dimensional Hilbert tensors. Linear Algebra Appl. 451, 1–14 (2014)
Trickett, S., Burroughs, L., Milton, A.: Interpolating using Hankel tensor completion, In: SEG Annual Meeting, 3634–3638 (2013)
Van Huffel, S.: Enhanced resolution based on minimum variance estimation and exponential data modeling. Signal Process. 33, 333–355 (1993)
Van Huffel, S., Chen, H., Decanniere, C., Van Hecke, P.: Algorithm for time-domain NMR data fitting based on total least squares. J. Magn. Reson. Ser. A 110, 228–237 (1994)
Wen, Z., Yin, W.: A feasible method for optimization with orthogonality constraints. Math. Program. Ser. A 142, 397–434 (2013)