Computing Extreme Eigenvalues of Large Scale Hankel Tensors

Springer Science and Business Media LLC - Tập 68 Số 2 - Trang 716-738 - 2016
Yannan Chen1, Liqun Qi2, Qun Wang2
1School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, China
2Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

Tóm tắt

Từ khóa


Tài liệu tham khảo

Attouch, H., Bolte, J.: On the convergence of the proximal algorithm for nonsmooth functions involving analytic features. Math. Program. Ser. B 116, 5–16 (2009)

Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka–Łojasiewicz inequality. Math. Oper. Res. 35, 438–457 (2010)

Bader, B., Kolda, T.: Efficient MATLAB computations with sparse and factored tensors. SIAM J. Sci. Comput. 30, 205–231 (2007)

Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA J. Numer. Anal. 8, 141–148 (1988)

Bolte, J., Daniilidis, A., Lewis, A.: The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. Optim. 17, 1205–1223 (2006)

Boyer, R., De Lathauwer, L., Abed-Meraim, K.: Higher order tensor-based method for delayed exponential fitting. IEEE Trans. Signal Process. 55, 2795–2809 (2007)

Chang, K.C., Pearson, K., Zhang, T.: On eigenvalue problems of real symmetric tensors. J. Math. Anal. Appl. 350, 416–422 (2009)

Chen, L., Han, L., Zhou, L.: Computing tensor eigenvalues via homotopy methods, (2015). arXiv:1501.04201v3

Chen, Y., Dai, Y., Han, D., Sun, W.: Positive semidefinite generalized diffusion tensor imaging via quadratic semidefinite programming. SIAM J. Imaging Sci. 6, 1531–1552 (2013)

Chen, Y., Qi, L., Wang, Q.: Positive semi-definiteness and sum-of-squares property of fourth order four dimensional Hankel tensors, (2015). arXiv:1502.04566v8

Choi, J.H., Vishwanathan, S.V.N.: DFacTo: distributed factorization of tensors, (2014). arXiv:1406.4519v1

Cichocki, A., Phan, A.-H.: Fast local algorithms for large scale nonnegative matrix and tensor factorizations. IEICE Trans. Fund. Electron. E92–A, 708–721 (2009)

Cooper, J., Dutle, A.: Spectra of uniform hypergraphs. Linear Algebra Appl. 436, 3268–3292 (2012)

Cui, C., Dai, Y., Nie, J.: All real eigenvalues of symmetric tensors. SIAM J. Matrix Anal. Appl. 35, 1582–1601 (2014)

Dai, Y.: A positive BB-like stepsize and an extension for symmetric linear systems, In: Workshop on Optimization for Modern Computation, Beijing, China, (2014), http://bicmr.pku.edu.cn/conference/opt-2014/slides/Yuhong-Dai

de Almeida, A.L.F., Kibangou, A.Y.: Distributed large-scale tensor decomposition, In: IEEE International Conference on Acoustics, Speech and Siganl Processing (ICASSP) (2014) 26–30

De Lathauwer, L., De Moor, B., Vandewalle, J.: On the best rank- $$1$$ 1 and rank- $$(R_1, R_2,\ldots, R_N)$$ ( R 1 , R 2 , … , R N ) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21, 1324–1342 (2000)

Ding, W., Qi, L., Wei, Y.: Fast Hankel tensor-vector product and its application to exponential data fitting. Numer. Linear Algebra Appl. 22, 814–832 (2015)

Ding, W., Wei, Y.: Generalized tensor eigenvalue problems. SIAM J. Matrix Anal. Appl. 36, 1073–1099 (2015)

Friedland, S., Nocedal, J., Overton, M.L.: The formulation and analysis of numerical methods for inverse eigenvalue problems. SIAM J. Numer. Anal. 24, 634–667 (1987)

Goldfarb, D., Wen, Z., Yin, W.: A curvilinear search method for the $$p$$ p -harmonic flow on spheres. SIAM J. Imaging Sci. 2, 84–109 (2009)

Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. The Johns Hopkins University Press, Baltimore (2013). ISBN 978-1-4214-0794-4

Han, L.: An unconstrained optimization approach for finding real eigenvalues of even order symmetric tensors. Numer. Algebra Control Optim. 3, 583–599 (2013)

Hao, C., Cui, C., Dai, Y.: A sequential subspace projection method for extreme Z-eigenvalues of supersymmetric tensors. Numer. Linear Algebra Appl. 22, 283–298 (2015)

Hao, C., Cui, C., Dai, Y.: A feasible trust-region method for calculating extreme Z-eigenvalues of symmetric tensors, Pacific J. Optim. 11, 291–307 (2015)

Hillar, C.J. , Lim, L.-H.: Most tensor problems are NP-hard, J. ACM 60 (2013) article 45:1–39

Hu, S., Huang, Z., Qi, L.: Finding the extreme Z-eigenvalues of tensors via a sequential SDPs method. Numer. Linear Algebra Appl. 20, 972–984 (2013)

Kang, U., Papalexakis, E., Harpale, A., Faloutsos, C.: GigaTensor: scaling tensor analysis up by 100 times—algorithms and discoveries, In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 316–324 (2012)

Kofidis, E., Regalia, P.A.: On the best rank- $$1$$ 1 approximation of higher-order supersymmetric tensors. SIAM J. Matrix Anal. Appl. 23, 863–884 (2002)

Kolda, T.G., Mayo, J.R.: Shifted power method for computing tensor eigenpairs. SIAM J. Matrix Anal. Appl. 32, 1095–1124 (2011)

Kolda, T.G., Mayo, J.R.: An adaptive shifted power method for computing generalized tensor eigenpairs. SIAM J. Matrix Anal. Appl. 35, 1563–1581 (2014)

Lim, L.-H.: Singular values and eigenvalues of tensors: a variational approach, In: Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP’05), 1: 129–132 (2005)

Łojasiewicz, S.: Une propriété topologique des sous-ensembles analytiques réels, Les Équations aux Dérivées Partielles, Éditions du centre National de la Recherche Scientifique, Paris, 87–89 (1963)

Luque, J.-G., Thibon, J.-Y.: Hankel hyperdeterminants and Selberg integrals. J. Phys. A 36, 5267–5292 (2003)

McAuley, J., Leskovec, J.: Hidden factors and hidden topics: understanding rating dimensions with review text, In: Proceeding of the 7th ACM Conference on Recommender Systems, 165–172 (2013)

Ni, G., Qi, L., Bai, M.: Geometric measure of entanglement and U-eigenvalues of tensors. SIAM J. Matrix Anal. Appl. 35, 73–87 (2014)

Ni, Q., Qi, L., Wang, F.: An eigenvalue method for testing positive definiteness of a multivariate form. IEEE Trans. Automat. Control 53, 1096–1107 (2008)

Nie, J., Wang, L.: Semidefinite relaxations for best rank-1 tensor approximations. SIAM J. Matrix Anal. Appl. 35, 1155–1179 (2014)

Oropeza, V., Sacchi, M.: Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis. Geophysics 76, V25–V32 (2011)

Papy, J.M., De Lathauwer, L., Van Huffel, S.: Exponential data fitting using multilinear algebra: the single-channel and multi-channel case. Numer. Linear Algebra Appl. 12, 809–826 (2005)

Papy, J.M., De Lathauwer, L., Van Huffel, S.: Exponential data fitting using multilinear algebra: the decimative case. J. Chemom. 23, 341–351 (2009)

Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40, 1302–1324 (2005)

Qi, L.: Hankel tensors: associated Hankel matrices and Vandermonde decomposition. Commun. Math. Sci. 13, 113–125 (2015)

Qi, L., Wang, F., Wang, Y.: Z-eigenvalue methods for a global polynomial optimization problem. Math. Program. Ser. A 118, 301–316 (2009)

Qi, L., Yu, G., Xu, Y.: Nonnegative diffusion orientation distribution function. J. Math. Imaging Vis. 45, 103–113 (2013)

Schatz, M.D., Low, T.-M., Van De Geijn, R.A., Kolda, T.G.: Exploiting symmetry in tensors for high performance. SIAM J. Sci. Comput. 36, C453–C479 (2014)

Schultz, T., Seidel, H.-P.: Estimating crossing fibers: a tensor decomposition approach. IEEE Trans. Vis. Comput. Gr. 14, 1635–1642 (2008)

Smith, R.S.: Frequency domain subspace identification using nuclear norm minimization and Hankel matrix realizations. IEEE Trans. Automat. Control 59, 2886–2896 (2014)

Song, Y., Qi, L.: Infinite and finite dimensional Hilbert tensors. Linear Algebra Appl. 451, 1–14 (2014)

Trickett, S., Burroughs, L., Milton, A.: Interpolating using Hankel tensor completion, In: SEG Annual Meeting, 3634–3638 (2013)

Van Huffel, S.: Enhanced resolution based on minimum variance estimation and exponential data modeling. Signal Process. 33, 333–355 (1993)

Van Huffel, S., Chen, H., Decanniere, C., Van Hecke, P.: Algorithm for time-domain NMR data fitting based on total least squares. J. Magn. Reson. Ser. A 110, 228–237 (1994)

Wen, Z., Yin, W.: A feasible method for optimization with orthogonality constraints. Math. Program. Ser. A 142, 397–434 (2013)

Xu, C.: Hankel tensors, Vandermonde tensors and their positivities, Linear Algebra Appl., in press (2015)