Motion‐compensated gradient waveforms for tensor‐valued diffusion encoding by constrained numerical optimization

Magnetic Resonance in Medicine - Tập 85 Số 4 - Trang 2117-2126 - 2021
Filip Szczepankiewicz1,2,3, Jens Sjölund4,5, Erica Dall’Armellina6, Sven Plein6, Jürgen E. Schneider6, Irvin Teh6, Carl‐Fredrik Westin2,3
1Diagnostic Radiology, Clinical Sciences Lund, Lund University, Lund, Sweden
2Harvard Medical School Boston Massachusetts USA
3Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
4Department of Information Technology, Uppsala University, Uppsala, Sweden
5Elekta Instrument AB, Stockholm, Sweden
6Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom

Tóm tắt

PurposeDiffusion‐weighted MRI is sensitive to incoherent tissue motion, which may confound the measured signal and subsequent analysis. We propose a “motion‐compensated” gradient waveform design for tensor‐valued diffusion encoding that negates the effects bulk motion and incoherent motion in the ballistic regime.MethodsMotion compensation was achieved by constraining the magnitude of gradient waveform moment vectors. The constraint was incorporated into a numerical optimization framework, along with existing constraints that account for b‐tensor shape, hardware restrictions, and concomitant field gradients. We evaluated the efficacy of encoding and motion compensation in simulations, and we demonstrated the approach by linear and planar b‐tensor encoding in a healthy heart in vivo.ResultsThe optimization framework produced asymmetric motion‐compensated waveforms that yielded b‐tensors of arbitrary shape with improved efficiency compared with previous designs for tensor‐valued encoding, and equivalent efficiency to previous designs for linear (conventional) encoding. Technical feasibility was demonstrated in the heart in vivo, showing vastly improved data quality when using motion compensation. The optimization framework is available online in open source.ConclusionOur gradient waveform design is both more flexible and efficient than previous methods, facilitating tensor‐valued diffusion encoding in tissues in which motion would otherwise confound the signal. The proposed design exploits asymmetric encoding times, a single refocusing pulse or multiple refocusing pulses, and integrates compensation for concomitant gradient effects throughout the imaging volume.

Từ khóa


Tài liệu tham khảo

10.1148/radiology.161.2.3763909

10.1016/S0730-725X(01)00415-5

10.1002/mrm.22232

10.2214/ajr.148.6.1251

10.1002/nbm.4213

10.1002/mrm.27869

10.1002/mrm.28128

10.1002/hbm.20856

10.1016/j.neuroimage.2006.03.004

10.1118/1.596093

10.1002/nbm.3505

10.1002/jmri.23796

10.1002/mrm.10188

10.1002/mrm.25784

10.1186/s12968-014-0068-y

10.1002/mrm.26166

10.1002/mrm.27462

10.1002/mrm.1910390413

10.1103/PhysRevB.51.15074

10.1093/acprof:oso/9780199556984.003.0008

10.1016/j.neuroimage.2016.02.039

Szczepankiewicz F, 2020, Gradient waveform design for tensor‐valued encoding in diffusion MRI, arXiv

10.3389/fphy.2014.00011

10.1016/j.jmr.2012.10.015

10.1016/j.neuroimage.2014.09.057

10.1002/mrm.24347

10.1002/nbm.2999

10.1016/j.neuroimage.2016.07.038

10.1002/mrm.27043

10.1093/braincomms/fcaa077

LasičS LundellH SzczepankiewiczF NilssonM SchneiderJE TehI.Time‐dependent and anisotropic diffusion in the heart: linear and spherical tensor encoding with varying degree of motion compensation. Proc. Intl. Soc. Magn. Reson. Med. 28 Sydney Australia. Program no: 4300;2020.

10.1002/mrm.1910190116

10.1002/(SICI)1099-0534(1997)9:5<299::AID-CMR2>3.0.CO;2-U

NalciogluO ChoZH XiangQS AhnCB.Incoherent flow imaging. In: Proceedings of SPIE 0671 Physics and Engineering of Computerized Multidimensional Imaging and Processing 1986.

10.1103/RevModPhys.79.1077

10.1016/S0921-4526(99)00160-X

10.1063/1.1696526

10.1016/j.jmr.2015.10.012

10.1002/mrm.27828

SzczepankiewiczF EichnerC AnwanderA WestinC‐F PaquetteM.The impact of gradient non‐linearity on Maxwell compensation when using asymmetric gradient waveforms for tensor‐valued diffusion encoding. In: Proceedings of the Virtual Conference of ISMRM & SMRT 2020. Abstract 3391.

10.1002/mrm.1910340202

10.1371/journal.pone.0214238

10.1161/CIRCIMAGING.108.813857

10.1002/mrm.22744

Coelho S, 2019, Optimal experimental design for biophysical modelling in multidimensional diffusion MRI, arXiv

HeidemannRM FeiweierT AnwanderA FasanoF PfeufferJ TurnerR.High resolution single‐shot diffusion weighted imaging with a combination of zoomed EPI and parallel imaging. In: Proceedings of the 17th Annual Meeting of ISMRM Honolulu Hawaii Abstract number: 2736;2009.

10.1016/j.dib.2019.104208

NilssonM SzczepankiewiczF LampinenB et al.An open‐source framework for analysis of multidimensional diffusion MRI data implemented in MATLAB. In: Proceedings of the Joint Annual Meeting of ISMRM‐ESMRMB Paris France 2018. Abstract 5355.

10.1002/mrm.24120

10.1002/mrm.21615

10.1002/nbm.3584

10.1016/0921-4526(93)90124-O

10.1063/1.5014044

NilssonM WestinC‐F BrabecJ LasičS SzczepankiewiczF.A unified framework for analysis of time‐dependent diffusion: Numerical validation of a restriction‐exchange correlation experiment. In: Proceedings of the Virtual Conference of ISMRM & SMRT 2020. Abstract 0718.

LundellH LasičS SzczepankiewiczF et al.Stay on the beat: tuning in on time‐dependent diffusion in the heart. In: Proceedings of the Virtual Conference of ISMRM & SMRT 2020. Abstract 0959.

10.1006/jmrb.1996.0055

10.1016/j.jmr.2019.01.007

10.1038/s41598-019-45235-7