Modulatory influence of Acacia hydaspica R. Parker ethyl acetate extract against cisplatin inveigled hepatic injury and dyslipidemia in rats
Tóm tắt
Cisplatin (CP) is recommended as a first-line chemotherapeutic agent for solid tumors, however its usage outcomes in severe adverse effects. Acacia hydaspica possesses various phytochemicals and pharmacological activities. The current study aimed to investigate the protective effect of A. hydaspica ethyl acetate extract (AHE) against CP induced aberrations in lipid profile and hepatotoxicity. Rats were randomly separated into six groups (n = 6). Group 1 (control) received distilled water orally for 21 days. Groups 2 (CP control) received a single dose of CP (7.5 mg/kg bw, i.p) on day 16, group 3 (Plant control) received AHE (400 mg/kg b.w, oral) for 21 days, group 4 (post treated group); CP received on day 16 and AHE (400 mg/kg b.w/day, p.o.) was administered after CP till day 21, Group 5 (pretreated group) received AHE (400 mg/kg b.w/day, p.o.) for 21 days and CP (7.5 mg/kg b.w., i.p.) on day 16, group 6 (Silymarin + CP) received 100 mg/kg b.w., p.o. (11 doses/21 days) and CP (7.5 mg/kg b.w., i.p.) on day 16. Lipid profile, liver functional tests, oxidative stress markers, antioxidant enzymes status and histopathological changes were examined. The present study revealed that CP caused body weights loss and increase liver index. CP significantly increased serum total lipid, triglycerides and LDL-cholesterol levels. Conversely, it significantly decreased serum HDL-cholesterol level. CP induced marked deteriorations in serum liver function biomarkers, reduced antioxidant enzymes in tissue, while elevated tissue oxidative stress markers along with morphological injuries compared to control rats. Treatment with AHE ameliorated CP induced alterations in lipid profile, serum ALT, AST, ALP and total bilirubin levels and liver weight. Furthermore AHE treatment improved the total protein and antioxidant enzymes levels while decreased the level of MDA, H2O2, and NO. The altered parameters were returned to the control level with AHE pretreatment. Histopathological analysis also supported the biochemical findings. Pretreatment seems to be more effective compared to post treatment indicating protective effect. These results reveal that treatment of AHE may be useful in the prevention of CP induced hepatotoxicity due to its antioxidant potential and polyphenolic constituents.
Tài liệu tham khảo
Lee WM. Drug-induced hepatotoxicity. N Engl J Med. 2003;349(5):474–85.
Grigorian A, O'Brien CB. Hepatotoxicity secondary to chemotherapy. Journal of Clinical and Translational Hepatology. 2014;2(2):95–102.
Kintzel PE. Anticancer drug—induced kidney disorders. Drug Saf. 2001;24(1):19–38.
Rabik CA, Dolan ME. Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat Rev. 2007;33(1):9–23.
Masubuchi Y, Kawasaki M, Horie T. Down-regulation of hepatic cytochrome P450 enzymes associated with cisplatin-induced acute renal failure in male rats. Arch Toxicol. 2006;80(6):347–53.
Villeneuve J-P, Pichette V. Cytochrome P450 and liver diseases. Curr Drug Metab. 2004;5(3):273–82.
Jin-Gang Z, Lindup WE. Role of mitochondria in cisplatin-induced oxidative damage exhibited by rat renal cortical slices. Biochem Pharmacol. 1993;45(11):2215–22.
Chirino YI, Pedraza-Chaverri J. Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity. Exp Toxicol Pathol. 2009;61(3):223–42.
Martins N, Santos N, Curti C, Bianchi M, Santos A. Cisplatin induces mitochondrial oxidative stress with resultant energetic metabolism impairment, membrane rigidification and apoptosis in rat liver. J Appl Toxicol. 2008;28(3):337–44.
Kart A, Cigremis Y, Karaman M, Ozen H. Caffeic acid phenethyl ester (CAPE) ameliorates cisplatin-induced hepatotoxicity in rabbit. Exp Toxicol Pathol. 2010;62(1):45–52.
Naqshbandi A, Khan W, Rizwan S, Khan F. Studies on the protective effect of flaxseed oil on cisplatin-induced hepatotoxicity. Human & experimental toxicology. 2012;31(4):364–75.
Yu F, Takahashi T, Moriya J, Kawaura K, Yamakawa J, Kusaka K, et al. Traditional Chinese medicine and Kampo: a review from the distant past for the future. J Int Med Res. 2006;34(3):231–9.
Gullett NP, Amin AR, Bayraktar S, Pezzuto JM, Shin DM, Khuri FR, Kucuk O. Cancer prevention with natural compounds. In Seminars in oncology. 2010;37(3):258–81.
Abdelmeguid NE, Chmaisse HN, Abou Zeinab NS. Silymarin ameliorates cisplatin-induced hepatotoxicity in rats: histopathological and ultrastructural studies. Pakistan journal of biological sciences : PJBS. 2010;13(10):463–79.
Yadav YC. Hepatoprotective effect of Ficus religiosa latex on cisplatin induced liver injury in Wistar rats. Rev Bras. 2015;25(3):278–83.
Malviya S, Rawat S, Kharia A, Verma M. INTERNATIONAL JOURNAL OF PHARMACY & LIFE SCIENCES. Int J of Pharm & Life Sci(IJPLS). 2011;2(6):830–7.
Jabeen A, Khan MA, Ahmad M, Zafar M, Ahmad F. Indigenous uses of economically important flora of Margallah hills national park, Islamabad Pakistan. African Journal of Biotechnology. 2009;8(5):763–84.
Chakrabarty T, Gangopadhyay M. The genus Acacia P. Miller (Leguminosae: Mimosoideae) in India. J Econ Taxon Bot. 1996;20(3):599–633.
Afsar T, Khan MR, Razak S, Ullah S, Mirza B. Antipyretic, anti-inflammatory and analgesic activity of Acacia hydaspica R. Parker and its phytochemical analysis. BMC complementary and alternative medicine. 2015;15(1):136.
Afsar T, Razak S, Khan MR, Mawash S, Almajwal A, Shabir M, et al. Evaluation of antioxidant, anti-hemolytic and anticancer activity of various solvent extracts of Acacia hydaspica R. Parker aerial parts. BMC Complement Altern Med. 2016:16.
Afsar T, Trembley JH, Salomon CE, Razak S, Khan MR, Ahmed K. Growth inhibition and apoptosis in cancer cells induced by polyphenolic compounds of Acacia Hydaspica: involvement of multiple signal transduction pathways. Sci Rep. 2016;6:23077.
Afsar T, Razak S, Khan MR, Almajwal A. Anti-depressant and anxiolytic potential of Acacia hydaspica R. Parker aerial parts extract: Modulation of brain antioxidant enzyme status. BMC complementary and alternative medicine. 2017;17(1):228.
Puga CD, Hilario MC, Mendoza JGE, Campos OM, Jijón EM, Martínez MD, et al. Antioxidant activity and protection against oxidative-induced damage of Acacia Shaffneri and Acacia farnesiana pods extracts: in vitro and in vivo assays. BMC Complement Altern Med. 2015;15(1):435–43.
Sundaram R, Mitra S. Antioxidant activity of ethyl acetate soluble fraction of Acacia arabica bark in rats. Indian journal of pharmacology. 2007;39(1):33.
Singh R, Singh B, Singh S, Kumar N, Kumar S, Arora S. Investigation of ethyl acetate extract/fractions of Acacia nilotica Willd. Ex del as potent antioxidant. Rec Nat Prod. 2009;3(3):131–8.
Kannan N, Sakthivel KM, Guruvayoorappan C. Protective effect of Acacia nilotica (L.) against acetaminophen-induced hepatocellular damage in wistar rats. Adv Pharmacol Sci. 2013;2013:1–9.
Pal R, Hooda MS, Bias CS, Singh J. Hepatoprotective Activity of Acacia senegal Pod against Carbon Tetrachloride-Induced Hepatotoxicity in Rats. International Journal of Pharmaceutical Sciences. 2014;26(1):165.
Akare S, Sahare A, Shende M, Bondre A, Wanjari A. Hepatoprotective activity of Acacia Ferruginea DC. Leaves against carbon tetrachloride induced liver damage in rats. International Journal of PharmTech Research. 2009;1(3):962–5.
Afsar T, Khan MR, Razak S, Ullah S, Mirza B. Antipyretic, anti-inflammatory and analgesic activity of Acacia Hydaspica R. Parker and its phytochemical analysis. BMC Complement Altern Med. 2015;15(1):136–48.
Guideline OO. 425: acute oral toxicity—up-and-down procedure. Paris: OECD Guidelines for the Testing of Chemicals Organization for Economic Cooperation and Development; 2001.
Turner P, Granville-Grossman K, Smart J. Effect of adrenergic receptor blockade on the tachycardia of thyrotoxicosis and anxiety state. Lancet. 1965;286(7426):1316–8.
Nasr AY, Saleh HA. Aged garlic extract protects against oxidative stress and renal changes in cisplatin-treated adult male rats. Cancer Cell Int. 2014;14(1):92.
Mohamed M. Garlic powder attenuates acrylamide-induced oxidative damage in multiple organs in rat. J Appl Sci Res. 2012;8(1):168–73.
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–75.
Chance B, Maehly A. [136] assay of catalases and peroxidases. Methods Enzymol. 1955;2:764–75.
Benson AM, Hunkeler MJ, Talalay P. Increase of NAD (P) H: quinone reductase by dietary antioxidants: possible role in protection against carcinogenesis and toxicity. Proc Natl Acad Sci. 1980;77(9):5216–20.
Jollow D, Mitchell J, Na Z, Gillette J. Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3, 4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology. 1974;11(3):151–69.
Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases the first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249(22):7130–9.
Carlberg I, Mannervik B. Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J Biol Chem. 1975;250(14):5475–80.
Mohandas J, Marshall JJ, Duggin GG, Horvath JS, Tiller DJ. Differential distribution of glutathione and glutathione-related enzymes in rabbit kidney: possible implications in analgesic nephropathy. Biochem Pharmacol. 1984;33(11):1801–7.
Orlowski M, Sessa G, Green JP. γ-Glutamyl transpeptidase in brain capillaries: possible site of a blood-brain barrier for amino acids. Science. 1974;184(4132):66–8.
Iqbal S, Bhanger M, Anwar F. Antioxidant properties and components of some commercially available varieties of rice bran in Pakistan. Food Chem. 2005;93(2):265–72.
Pick E, Mizel D. Rapid microassays for the measurement of superoxide and hydrogen peroxide production by macrophages in culture using an automatic enzyme immunoassay reader. J Immunol Methods. 1981;46(2):211–26.
Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15 N] nitrate in biological fluids. Anal Biochem. 1982;126(1):131–8.
Amin A, Hamza AA. Effects of Roselle and Ginger on cisplatin-induced reproductive toxicity in rats. Asian journal of andrology. 2006;8(5):607–12.
Ko J-W, Lee I-C, Park S-H, Moon C, Kang S-S, Kim S-H, et al. Protective effects of pine bark extract against cisplatin-induced hepatotoxicity and oxidative stress in rats. Laboratory animal research. 2014;30(4):174–80.
Iliskovic N, Singal PK. Lipid lowering: an important factor in preventing adriamycin-induced heart failure. Am J Pathol. 1997;150(2):727–34.
Nora CD, Danelli D, Souza LF, AdO R, EVd J, Flôres SH. protective effect of guabiju (Myrcianthes Pungens (O. Berg) D. Legrand) and red guava (Psidium cattleyanum Sabine) against cisplatin-induced hypercholesterolemia in rats. Brazilian Journal of Pharmaceutical Sciences. 2014;50(3):483–91.
Pilehvar A, Tabrizi BA, Javadi A. The effect of grape seeds oil on lipid content of serum in rats. Advances in Bioresearch. 2013;4(4):21–5.
İşeri S, Ercan F, Gedik N, Yüksel M, Alican I. Simvastatin attenuates cisplatin-induced kidney and liver damage in rats. Toxicology. 2007;230(2):256–64.
Bogin E, Marom M, Levi Y. Changes in serum, liver and kidneys of cisplatin-treated rats; effects of antioxidants. Clin Chem Lab Med. 1994;32(11):843–52.
Kim SH, Hong KO, Chung W-Y, Hwang JK, Park K-K. Abrogation of cisplatin-induced hepatotoxicity in mice by xanthorrhizol is related to its effect on the regulation of gene transcription. Toxicol Appl Pharmacol. 2004;196(3):346–55.
Liao Y, Lu X, Lu C, Li G, Jin Y, Tang H. Selection of agents for prevention of cisplatin-induced hepatotoxicity. Pharmacol Res. 2008;57(2):125–31.
Rasool MK, Sabina EP, Ramya SR, Preety P, Patel S, Mandal N, et al. Hepatoprotective and antioxidant effects of gallic acid in paracetamol-induced liver damage in mice. J Pharm Pharmacol. 2010;62(5):638–43.
Mansour HH, Hafez HF, Fahmy NM. Silymarin modulates cisplatin-induced oxidative stress and hepatotoxicity in rats. J Biochem Mol Biol. 2006;39(6):656.
Boyer T, Vessey D, Holcomb C, Saley N. Studies of the relationship between the catalytic activity and binding of non-substrate ligands by the glutathione S-transferases. Biochem J. 1984;217:179–85.
Parola M, Robino G. Oxidative stress-related molecules and liver fibrosis. J Hepatol. 2001;35(2):297–306.
Lu Y, Cederbaum AI. Cisplatin-induced hepatotoxicity is enhanced by elevated expression of cytochrome P450 2E1. Toxicol Sci. 2006;89(2):515–23.
Abdel-Wahhab KGE-D, El-Shamy KA, El-Beih NAE-Z, Morcy FA, Mannaa FAE. Protective effect of a natural herb (Rosmarinus officinalis) against hepatotoxicity in male albino rats. Comunicata Scientiae. 2011;2(1):9–17.
Kannan N, Sakthivel KM, Guruvayoorappan C. Protective effect of Acacia nilotica (L.) against acetaminophen-induced hepatocellular damage in wistar rats. Adv Pharmacol Sci. 2013:2013.
Chávez E, Reyes-Gordillo K, Segovia J, Shibayama M, Tsutsumi V, Vergara P, et al. Resveratrol prevents fibrosis, NF-κB activation and TGF-β increases induced by chronic CCl4 treatment in rats. J Appl Toxicol. 2008;28(1):35–43.
Madrigal-Santillán E, Madrigal-Bujaidar E, Álvarez-González I, Sumaya-Martínez MT, Gutiérrez-Salinas J, Bautista M, et al. review of natural products with hepatoprotective effects. World J Gastroenterol. 2014;20(40):14787–804.
Raj PV, Nitesh K, Gang SS, Jagani VH, Chandrashekhar HR, Rao JV, et al. Protective role of catechin on d-galactosamine induced hepatotoxicity through a p53 dependent pathway. Indian J Clin Biochem. 2010;25(4):349–56.