Reversal effects of nomegestrol acetate on multidrug resistance in adriamycin-resistant MCF7 breast cancer cell line
Tóm tắt
Chemotherapy is important in the systematic treatment of breast cancer. To enhance the response of tumours to chemotherapy, attention has been focused on agents to reverse multidrug resistance (MDR) and on the sensitivity of tumour cells to chemical drugs. Hundreds of reversal drugs have been found in vitro, but their clinical application has been limited because of their toxicity. The reversal activity of progestogen compounds has been demonstrated. However, classical agents such as progesterone and megestrol (MG) also have high toxicity. Nomegestrol (NOM) belongs to a new derivation of progestogens and shows very low toxicity. We studied the reversal activity of NOM and compared it with that of verapamil (VRP), droloxifene (DRO), tamoxifen (TAM) and MG, and investigated the reversal mechanism, i.e. effects on the expression of the MDR1, glutathione S-transferase Pi (GSTπ), MDR-related protein (MRP) and topoisomerase IIα (TopoIIα) genes, as well as the intracellular drug concentration and the cell cycle. The aim of the study was to examine the reversal effects of NOM on MDR in MCF7/ADR, an MCF7 breast cancer cell line resistant to adriamycin (ADR), and its mechanism of action. MCF7/ADR cells and MCF7/WT, an MCF7 breast cancer cell line sensitive to ADR, were treated with NOM as the acetate ester. With an assay based on a tetrazolium dye [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide; MTT], the effects of various concentrations of NOM on MDR in MCF7/ADR cells were studied. Before and after the treatment with 5 μM NOM, the expression of the MDR-related genes MDR1, GSTπ, TopoIIα and MRP were assayed with a reverse transcriptase polymerase chain reaction (RT-PCR) immunocytochemistry assay. By using flow cytometry (FCM), we observed the intracellular ADR concentration and the effects of combined treatment with NOM and ADR on the cell cycle. Results collected were analysed with Student's t test. NOM significantly reversed MDR in MCF7/ADR cells. After treatment NOM at 20, 10 and 5 μM, chemosensitivity to ADR increased 21-fold, 12-fold and 8-fold, respectively. The reversal activity of NOM was stronger than that of the precursor compound MG, and comparable to that of VRP. After treatment with 5 μM NOM, the expression of both the MDR1 and the GSTπ mRNA genes began to decline on the second day (P <0.05 and P <0.01, respectively), and reached the lowest level on the third day (both P <0.01); however, on the fifth day the expression levels began to increase again (both P <0.05). The expression of MRP and TopoIIα had no significant changes. Changes in the expression of P-glycoprotein (P-gp) and GSTπ were similar to those of their mRNA expressions, showing early declines and late increases. Two hours after treatment with 20, 10 and 5 μM NOM, the intracellular ADR concentration increased 2.7-fold, 2.3-fold and 1.5-fold respectively. However, NOM did not increase ADR accumulation in MCF7/WT cells. FCM data showed that after 48 h of combined administration of NOM (20 μM) and ADR (from low to high concentration), MCF7/ADR cells showed a gradual arrest at the G2M phase with increasing ADR dose. The arrest effect with combined drug treatment was stronger than that with the single ADR treatment. MDR is the major mechanism of drug resistance in malignant tumour cells. To overcome MDR and to increase chemosensitivity, many reversal agents have been found. Most progestogen compounds have been demonstrated to have reversal effects, but we found no data on NOM, a new progestogen compound. Our results show that NOM has strong reversal activity. The reversal effects were stronger than those of the precursor compound, MG, and were comparable to that of VRP. Because NOM has low toxicity, it might have good prospects in clinical application. Using RT-PCR and immunocytochemistry assays, we studied the effects of NOM on MDR-related genes. The results were that NOM could markedly downregulate the mRNA and protein expression levels of MDR1 and GSTπ. TopoIIα and MRP gene expression showed no significant changes. It is known that P-gp induces MDR in tumour cells mainly by decreasing the intracellular drug concentration. After treatment with NOM, the intracellular drug concentration in MCF7/ADR cells increased significantly. Combined treatment with NOM and ADR induced arrest at the G2M phase. It is worth noting that NOM caused an early decrease and a late increase in the expression of some MDR-related genes in a time-dependent manner. The phenomena raise a question for the continued administration of reversal agents in clinics that merits further study. We demonstrate that NOM has strong reversal effects on MDR in MCF7/ADR cells. The reversal is via different routes, namely downregulating the mRNA and protein expression levels of MDR1 and GSTπ, increasing intracellular drug concentration and arresting cells at the G2M phase (NOM in combination with ADR). The reversal mechanism needs further study.
Tài liệu tham khảo
Early Breast Cancer Trialists' Collaborative Group: Systemic treatment of early breast cancer by hormonal, cytotoxic, or immune therapy: 133 randomised trials involving 31,000 recurrences and 24,000 deaths among 75,000 women. Lancet. 1992, 339: 71-84. 10.1016/0140-6736(92)90997-H.
Gottesman MM: How cancer cells evade chemotherapy. Cancer Res. 1993, 53: 747-754.
Ferry DR, Traunecker H, Kerr DJ: Clinical trials of P-glycoprotein reversal in solid tumours. Eur J Cancer. 1996, 32A: 1070-1081. 10.1016/0959-8049(96)00091-3.
Panasci L, Jean-Claude BJ, Vasilescu D, Mustafa A, Damian S, Damian Z, Georges E, Liu Z, Batist G, Leyland-Jones B: Sensitization to doxorubicin resistance in breast cancer cell lines by tamoxifen and megestrol acetate. Biochem Pharmacol. 1996, 52: 1097-1102. 10.1016/0006-2952(96)00456-X.
Claudio JA, Emerman JT: The effects of cyclosporin A, tamoxifen, and medroxyprogesterone acetate on the enhancement of adriamycin cytotoxicity in primary cultures of human breast epethelial cells. Breast Cancer Res Treat. 1996, 41: 111-122.
Fleming GF, Amato JM, Agresti M, Safa AR: Megestrol acetate reverses multidrug resistance and interacts with P-glycoprotein. Cancer Chemother Pharmacol. 1992, 29: 445-449.
Aisner J, Tchekmedyian NS, Tait N, Parnes H, Novak M: Studies of high-dose megestrol acetate: potential application in cachexia. Semin Oncol. 1988, 15S: 68-75.
Grulol DJ, Bourgeois S: Chemosensitizing steroids: glucocorticoid receptor agonists capable of inhibiting P-glycoprotein function. Cancer Res. 1997, 54: 720-727.
Gasteaud JM: 3,20-Diketo, 6-methyl, 17-α-hydroxy 19-norpregna 4,6-diene, its esters and the uses thereof. US Patent 4544555. 1985
Yang C-PH, DePinho SH, Greenberger LM, Arceci RJ, Horwitz SB: Progesterone interacts with P-glycoprotein in multidrug-resistant cells and in the endometrium of gravid uterus. J Biol Chem. 1989, 264: 782-785.
Wang L, Yang CP, Horwitz SB, Trail PA, Casazza AM: Reversal of the human multidrug-resistance phenotype with megestrol acetate. Cancer Chemother Pharmacol. 1994, 34: 96-102. 10.1007/s002800050112.
Bojar H, Stuschke M, Staib W: Effects of high-dose medrox-yprogesterone acetate on plasma membrane lipid mobility. Prog Cancer Res Ther. 1984, 31: 115-119.
Vickers PJ, Dickson RB, Shoemaker R, Cowan KH: A multidrug-resistant MCF7 human cancer cell line which exhibits cross-resistance to anti-estrogens and hormone-independent tumor growth. Mol Endocrinol. 1988, 2: 886-892.
Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB: Evaluation of a tetrzolium based semiautomated colormetric assay: assessment of chemosensitivity testing. Cancer Res. 1987, 47: 936-
O'Driscoll L, Kennedy S, McDermott E, Kelehan P, Clynes M: Multiple drug resistance-related messenger RNA expression in archival formalin-fixed paraffin-embedded human breast tumour tissue. Eur J Cancer. 1996, 32A: 128-133. 10.1016/0959-8049(95)00552-8.
Zhou G: Routine histoimmunochemistry methods. In Practical Methodology of Oncopathology [in Chinese]. Edited by Xu L. Shanghai: Shanghai Medical University Press, Changshu Printing Factory;. 1997, 173-174.
Xu L, Yang W: Standards of determining histoimmunochemistry staining results [in Chinese]. China Oncol. 1996, 6: 229-231.
Ling V: P-glycoprotein and resistance to anticancer drugs. Cancer. 1992, 69: 2693-2609.
Ford JM: Experimental reversal of P-glycoprotein-mediated multidrug resistance by pharmacological chemosensitisers. Eur J Cancer. 1996, 32A: 991-1001. 10.1016/0959-8049(96)00047-0.
Yang CP, Cohen D, Greenberger LM, Hsu SI, Horwitz SB: Differential transport properties of two mdr gene products are distinguished by progesterone. J Biol Chem. 1990, 265: 10282-10288.
Wang L, Yang C-PH, Trial P, Horwitz SB, Casazza AM: Reversal of the multidrug resistance (MDR) phenotype with megesterol acetate. (MA). Proc Am Assoc Cancer Res. 1991, 32: 377-
Pasqualini JR, Paris J, Sitruk-Ware R, Chetrite G, Botella J: Progestins and breast cancer. J Steroid Biochem Mol Biol. 1998, 65: 225-235. 10.1016/S0960-0760(98)00028-4.
Rao US, Fine RL, Scarborough GA: Antiestrogens and steroid hormones: substrates of the human P-glycoprotein. Biochem Pharmacol. 1994, 48: 287-292. 10.1016/0006-2952(94)90099-X.
Batist G, Tulpule A, Sinha BK, Katki AG, Myers CE, Cowan KH: Overexpression of a novel anionic glutathione transferase in multidrug-resistant human breast cancer cells. J Biol Chem. 1986, 261: 15544-15549.
Ford JM, Brufferman EP: Cellular and biochemical characterization of thioxanthenes for reversal of multidrug resistance in human and murine cell lines. Cancer Res. 1990, 50: 1748-1756.
Wunder JS, Andrulis IL, Gazdar AF, Willman CL, Griffith B, Von Hoff DD: Quantitative analysis of MDR1 (multidrug resistance) gene expression in human tumors by polymerase chain reaction. Proc Natl Acad Sci USA. 1990, 87: 7160-7164.
Herzog CE, Trepel JB, Mickley LA, Bates SE, Fojo AT: Various methods of analysis of mdr1/P-glycoprotein in human colon cancer cell lines. J Natl Cancer Inst. 1992, 84: 711-716.
Lehnert M: Clinical multidrug resistance in cancer: a multifactorial problem. Eur J Cancer. 1996, 32A: 912-920. 10.1016/0959-8049(96)00069-X.
Stein U, Walther W, Shoemaker RH: Modulation of mdr1 expression by cytokines in human colon carcinoma cells: an approach for reversal of multidrug resistance. Br J Cancer. 1996, 74: 1384-1391.
Liu S, Meng S, Yang J, Ping W: Reversal effect of R3 (extract from a Chinese herb Bu-Gu-Zhi) on MDR of MCF7/ADR cell line [in Chinese]. Chinese J Clin Oncol. 1997, 24: 325-330.
Herzog CE, Tsokos M, Bates SE, Fojo AT: Increased mdr-1/P-glycoprotein expression after treatment of human colon carcinoma cells with P-glycoprotein antagonists. J Biol Chem. 1993, 268: 2946-2952.
Bhat UG, Winter MA, Pearce HL, Beck WT: A structure-function relationship among reserpine/yohimbine analogs in their ability to increase expression of mdr1 and P-glycoprotein in a colon carcinoma cell line. Mol Pharmacol. 1995, 48: 682-689.
Lee GY, Croop JM, Anderson E: Multidrug resistance gene expression correlates with progesterone production in dehydroepiandrosterone-induced polycystic and equine chorionic gonadotropin-stimulated ovaries of prepubertal rats. Biol Reprod. 1998, 58: 330-337.
Danks MK, Schmidt CA, Cirtain MC, Suttle DP, Beck WT: Altered catalytic activity of and DNA cleavage topoisomeraseII from human leukemic cells selected for resistance to VM-26. Biochemistry. 1988, 27: 8861-8869.
Danks MK, Yalowich JC, Beck WT: Atypical multiple drug resistance in a human leukemic cell line selected for resistance to teniposide (VM-26). Cancer Res. 1987, 47: 1297-1301.
Loe DW, Deeley RG, Cole SP: Biology of the multidrug resistance-associated protein, MRP. Eur J Cancer. 1996, 32A: 945-957. 10.1016/0959-8049(96)00046-9.
Loe DW, Deeley RG, Cole SP: Chemosensitisation and drug accumulation effects of cyclosporin A, PSC833 and verapamil in human MDR large cell lung cancer cells expressing a 190k membrane protein distinct from P-glycoprotein. Eur J Cancer. 1993, 29A: 408-415.
Leier I, Jedlitschky G, Buchholz U, Cole SP, Deeley RG, Keppler D: The MRP gene encodes an ATP-dependent export pump for leukotriene C4 and structurally related conjugates. J Biol Chem. 1994, 269: 27807-27810.
Zaman GJ, Flens MJ, van Leusden MR, de Haas M, Mulder HS, Lankelma J, Pinedo HM, Scheper RJ, Baas F, Broxterman HJ: The human multidrug resistance-associated protein MRP is a plasma membrane drug-efflux pump. Proc Natl Acad Sci USA. 1994, 91: 8822-8826.
Hwang J, Hwong CL: Cellular regulation of mammalian DNA topoisomerases. Adv Pharmacol. 1994, 29A: 167-189.
de Jong S, Zijlstra JG, de Vries EG, Mulder NH: Reduced DNA topoisomerase and drug-induced DNA cleavage activity in an adriamycin-resistant human small cell lung carcinoma cell line. Cancer Res. 1990, 50: 304-309.
Bugg BY, Danks MK, Beck WT, Suttle DP: Expression of a mutant DNA topoisomerase etioposide in CCRF-CEM human leukemic cells selected for resistance to teniposide. Proc Natl Acad Sci USA. 1991, 88: 7654-7658.
Germann UA: P-glycoprotein-a mediator of multidrug resistance in tumour cells. Eur J Cancer. 1996, 32A: 927-944. 10.1016/0959-8049(96)00057-3.
Claudo JA, Emerman JT: The effects of cyclosporin A, tamoxifen, and medroxyprogesterone acetate on the enhancement of adriamycin cytotoxicity in primary cultures of human breast epithelial cells. Breast Cancer Res Treat. 1996, 41: 111-122.
Wadler S, Green MD, Basch R, Muggia FM: Lethal and sublethal effects of the combination of doxorubicin and the bis-dioxopiperazine(+)-1,2-bis(3,5-diozopeperazinyl-l-yl) propane (ICRF 187) on murine sarcoma S180 in vitro. Biochem Pharmacol. 1987, 9: 1495-1501. 10.1016/0006-2952(87)90116-X.