Site‐specific integration of the conjugal Vibrio cholerae SXT element into prfC

Molecular Microbiology - Tập 32 Số 1 - Trang 99-110 - 1999
Bianca Hochhut1, Matthew K. Waldor
1New England Medical Center, Boston, MA, USA

Tóm tắt

Vibrio cholerae O139, the first non‐O1 serogroup of V. cholerae to give rise to epidemic cholera, is characteristically resistant to the antibiotics sulphamethoxazole, trimethoprim, chloramphenicol and streptomycin. Resistances to these antibiotics are encoded by a 62 kb self‐transmissible, conjugative, chromosomally integrating element designated the ‘SXT element’. We found that the SXT element integrates site specifically into both V. cholerae and Escherichia coli K‐12 into the 5′ end of prfC, the gene encoding peptide chain release factor 3. Integration of the SXT element interrupts the chromosomal prfC gene, but the element encodes a new 5′ end of prfC that restores the reading frame of this gene. The recombinant prfC allele created upon element integration is functional. The integration and excision mechanism of the SXT element shares many features with site‐specific recombination found in lambdoid phages. First, like λ, the SXT element forms a circular extrachromosomal intermediate through specific recombination of the left and right ends of the integrated element. Second, chromosomal integration of the element occurs via site‐specific recombination in a 17 bp sequence found in the circular form of the SXT element and a similar 17 bp sequence in prfC. Third, both chromosomal integration and excision of the SXT element were found to require an element‐encoded int gene with strong similarities to the λ integrase family. Based on the properties of the SXT element, we propose to classify this element as a CONSTIN, an acronym for a conjugative, self‐transmissible, integrating element.

Từ khóa


Tài liệu tham khảo

10.1093/protein/5.1.87

10.1093/nar/25.17.3389

10.1002/j.1460-2075.1986.tb04229.x

Ausubel F.M. Brent R. Kingston R.E. Moore D.D. Seidmann J.G. Smith J.A. Struhl K.(1990)Current Protocols in Molecular Biology. New York: Greene Publishing and Wiley Interscience.

Bauer C.E., 1989, The effect of attachment site mutations on strand exchange in bacteriophage λ site‐specific recombination, Genetics, 122, 727, 10.1093/genetics/122.4.727

10.1128/jb.174.1.166-172.1992

10.1002/j.1460-2075.1995.tb06993.x

10.1128/iai.62.2.606-614.1994

Bringel F., 1992, Conjugative transposition of Tn916 : the transposon int gene is required only in the donor, J Bacteriol, 174, 4036, 10.1128/jb.174.12.4036-4041.1992

10.1046/j.1365-2958.1997.3711734.x

10.1111/j.1365-2958.1995.mmi_18040671.x

10.1128/jb.174.23.7495-7499.1992

10.1111/j.1365-2958.1995.mmi_18020201.x

10.1016/0140-6736(93)92811-7

10.1128/IAI.63.1.317-323.1995

10.1128/jb.165.3.723-731.1986

10.1073/pnas.91.13.5848

10.1128/jb.179.7.2097-2102.1997

10.1073/pnas.77.5.2482

Jaworski D.D., 1994, Evidence that coupling sequences play a frequency‐determining role in conjugative transposition of Tn916 in Enterococcus faecalis, J Bacteriol, 176, 3328, 10.1128/jb.176.11.3328-3335.1994

10.1038/308655a0

Kawazu Y., 1995, Comparative characterization of release factor RF‐3 genes of Escherichia coli, Salmonella typhimurium, and Dichelobacter nodosus, J Bacteriol, 177, 5547, 10.1128/jb.177.19.5547-5553.1995

10.1016/0022-2836(86)90491-2

10.1006/plas.1996.0001

10.1073/pnas.91.13.5798

Miller J.H.(1992).A Short Course in Bacterial Genetics: a Laboratory Manual and Handbook for Escherichia Coli and Relative Bacteria. Col Spring Harbor NY: Cold Spring Harbour Laboratory Press.

10.1128/jb.170.6.2575-2583.1988

10.1016/S0140-6736(05)65326-3

Mukhopadhyay A.K., 1998, Molecular epidemiology of reemergent Vibrio cholerae O139 Bengal in India, J Clin Microbiol, 36, 2149, 10.1128/JCM.36.7.2149-2152.1998

10.1111/j.1574-6968.1995.tb07930.x

10.1093/infdis/169.5.1029

Nash H.A.(1996). Site‐specific recombination: integration excision resolution and inversion of defined DNA segments. InEscherichia Coli and Salmonella: Cellular and Molecular Biology. Neidhardt F.C. Curtiss III R. Ingraham L.L. Lin E.C.C. Low K.B. Magasanik B.et al. (eds). Washington DC: American Society for Microbiology pp.2363–2376.

10.1002/j.1460-2075.1989.tb08373.x

10.1128/jb.176.8.2165-2171.1994

10.1128/JB.180.17.4360-4369.1998

10.1111/j.1365-2958.1995.mmi_17010109.x

10.1128/MMBR.59.4.579-590.1995

10.1146/annurev.mi.49.100195.002055

10.1073/pnas.85.13.4809

10.1111/j.1365-2958.1994.tb00386.x

Sharma C., 1997, Unique organization of the CTX genetic element in Vibrio cholerae O139 strains which reemerged in Calcutta, India, in September 1996, J Clin Microbiol, 95, 3348, 10.1128/jcm.35.12.3348-3350.1997

10.1128/mr.53.1.1-24.1989

10.1073/pnas.95.9.5145

Vijayakumar M.N., 1993, Nucleotide sequence analysis of the termini and chromosomal locus involved in site‐specific integration of the streptococcal conjugative transposon Tn5252, J Bacteriol, 175, 2713, 10.1128/jb.175.9.2713-2719.1993

Waldor M.K., 1994, ToxR regulates virulence gene expression in non‐O1 strains of Vibrio cholerae that cause epidemic cholera, Infect Immun, 62, 72, 10.1128/iai.62.1.72-78.1994

10.1016/S0140-6736(94)92504-6

10.1128/jb.178.14.4157-4165.1996

10.1046/j.1365-2958.1997.3911758.x

Weisberg R.A.&Landy A.(1983) Site‐specific integration in phage lambda. InLambda II. Hendrix R.W.J. Roberts W. Stahl F.W. and Weisberg R.A. (eds). Cold Spring Harbour NY: Cold Spring Harbour Laboratory Press pp.211–250.

10.1016/S0022-2836(83)80151-X

Yamamoto T. Nair G.B. Alpert M.J. Parodi C. Takeda Y.(1994) In vitro susceptibilities ofVibrio choleraeO1 and O139 to antimicrobial agents and appearance of drug resistance plasmids inVibrio choleraeO139. InProceedings of the 30th Joint Conference US–Japan Cooperative Medical Science Program for Cholera and Related Diarrheal Diseases Panel Fukuaka Japan December 1994. Bethesda MD: National Institutes of Health.

10.1128/jb.178.13.3755-3762.1996