A high-density Diversity Arrays Technology (DArT) microarray for genome-wide genotyping in Eucalyptus
Tóm tắt
A number of molecular marker technologies have allowed important advances in the understanding of the genetics and evolution of Eucalyptus, a genus that includes over 700 species, some of which are used worldwide in plantation forestry. Nevertheless, the average marker density achieved with current technologies remains at the level of a few hundred markers per population. Furthermore, the transferability of markers produced with most existing technology across species and pedigrees is usually very limited. High throughput, combined with wide genome coverage and high transferability are necessary to increase the resolution, speed and utility of molecular marker technology in eucalypts. We report the development of a high-density DArT genome profiling resource and demonstrate its potential for genome-wide diversity analysis and linkage mapping in several species of Eucalyptus. After testing several genome complexity reduction methods we identified the Pst I/Taq I method as the most effective for Eucalyptus and developed 18 genomic libraries from Pst I/Taq I representations of 64 different Eucalyptus species. A total of 23,808 cloned DNA fragments were screened and 13,300 (56%) were found to be polymorphic among 284 individuals. After a redundancy analysis, 6,528 markers were selected for the operational array and these were supplemented with 1,152 additional clones taken from a library made from the E. grandis tree whose genome has been sequenced. Performance validation for diversity studies revealed 4,752 polymorphic markers among 174 individuals. Additionally, 5,013 markers showed segregation when screened using six inter-specific mapping pedigrees, with an average of 2,211 polymorphic markers per pedigree and a minimum of 859 polymorphic markers that were shared between any two pedigrees. This operational DArT array will deliver 1,000-2,000 polymorphic markers for linkage mapping in most eucalypt pedigrees and thus provide high genome coverage. This array will also provide a high-throughput platform for population genetics and phylogenetics in Eucalyptus. The transferability of DArT across species and pedigrees is particularly valuable for a large genus such as Eucalyptus and will facilitate the transfer of information between different studies. Furthermore, the DArT marker array will provide a high-resolution link between phenotypes in populations and the Eucalyptus reference genome, which will soon be completed.
Tài liệu tham khảo
Grattapaglia D, Kirst M: Eucalyptus applied genomics: from gene sequences to breeding tools. New Phytologist. 2008, 179: 911-929. 10.1111/j.1469-8137.2008.02503.x.
Myburg AA, Potts BM, Marques CM, Kirst M, Gion JM, Grattapaglia D, Grima-Pettenati J: Eucalyptus. Genome mapping and molecular breeding in plants. Edited by: C K. 2007, Forest trees. New York, NY, USA: Springer, 7: 115-160. full_text.
Steane DA, Nicolle D, Vaillancourt RE, Potts BM: Higher-level relationships among the eucalypts are resolved by ITS-sequence data. Australian Systematic Botany. 2002, 15: 49-62. 10.1071/SB00039.
Steane D, Conod N, Jones R, Vaillancourt R, Potts B: A comparative analysis of population structure of a forest tree, Eucalyptus globulus (Myrtaceae), using microsatellite markers and quantitative traits. Tree Genetics & Genomes. 2006, 2: 30-38.
Payn KG, Dvorak WS, Janse BJH, Myburg AA: Microsatellite diversity and genetic structure of the commercially important tropical tree species Eucalyptus urophylla, endemic to seven islands in eastern Indonesia. Tree Genetics & Genomes. 2008, 4: 519-530.
Grattapaglia D, Ribeiro VJ, Rezende GD: Retrospective selection of elite parent trees using paternity testing with microsatellite markers: an alternative short term breeding tactic for Eucalyptus. Theor Appl Genet. 2004, 109: 192-199. 10.1007/s00122-004-1617-9.
Byrne M, Murrell JC, Allen B, Moran GF: An integrated genetic linkage map for eucalypts using RFLP, RAPD and isozyme markers. Theoretical and Applied Genetics. 1995, 91: 869-875. 10.1007/BF00223894.
Brondani R, Williams E, Brondani C, Grattapaglia D: A microsatellite-based consensus linkage map for species of Eucalyptus and a novel set of 230 microsatellite markers for the genus. BMC Plant Biology. 2006, 6: 20-10.1186/1471-2229-6-20.
Thamarus K, Groom K, Murrell J, Byrne M, Moran G: A genetic linkage map for Eucalyptus globulus with candidate loci for wood, fibre and floral traits. Theor Appl Genet. 2002, 104: 379-387. 10.1007/s001220100717.
Grattapaglia D, Bertolucci FL, Penchel R, Sederoff RR: Genetic mapping of quantitative trait loci controlling growth and wood quality traits in Eucalyptus grandis using a maternal half-sib family and RAPD markers. Genetics. 1996, 144: 1205-1214.
Freeman JS, Whittock SP, Potts BM, Vaillancourt RE: QTL influencing growth and wood properties in Eucalyptus globulus. Tree Genetics & Genomes. 2009, 5: 713-722.
Junghans DT, Alfenas AC, Brommonschenkel SH, Oda S, Mello EJ, Grattapaglia D: Resistance to rust ( Puccinia psidii Winter) in Eucalyptus: mode of inheritance and mapping of a major gene with RAPD markers. Theor Appl Genet. 2003, 108: 175-180. 10.1007/s00122-003-1415-9.
Thamarus K, Groom K, Bradley A, Raymond CA, Schimleck LR, Williams ER, Moran GF: Identification of quantitative trait loci for wood and fibre properties in two full-sib properties of Eucalyptus globulus. Theor Appl Genet. 2004, 109: 856-864. 10.1007/s00122-004-1699-4.
Myburg AA, Griffin AR, Sederoff RR, Whetten RW: Comparative genetic linkage maps of Eucalyptus grandis, Eucalyptus globulus and their F1 hybrid based on a double pseudo-backcross mapping approach. Theor Appl Genet. 2003, 107: 1028-1042. 10.1007/s00122-003-1347-4.
Jaccoud D, Peng K, Feinstein D, Kilian A: Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res. 2001, 29 (4): E25-10.1093/nar/29.4.e25.
Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A: Diversity Arrays Technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci USA. 2004, 101: 9915-9920. 10.1073/pnas.0401076101.
Wittenberg A, Lee T, Cayla C, Kilian A, Visser R, Schouten H: Validation of the high-throughput marker technology DArT using the model plant Arabidopsis thaliana. Molecular Genetics and Genomics. 2005, 274: 30-39. 10.1007/s00438-005-1145-6.
Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H: Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. TAG Theoretical and Applied Genetics. 2006, 113: 1409-1420. 10.1007/s00122-006-0365-4.
Xia L, Peng K, Yang S, Wenzl P, Carmen de Vicente M, Fregene M, Kilian A: DArT for high-throughput genotyping of cassava (Manihot esculenta) and its wild relatives. TAG Theoretical and Applied Genetics. 2005, 110: 1092-1098. 10.1007/s00122-005-1937-4.
Tinker NA, Kilian A, Wight CP, Heller-Uszynska K, Wenzl P, Rines HW, Bjornstad A, Howarth CJ, Jannink JL, Anderson JM: New DArT markers for oat provide enhanced map coverage and global germplasm characterization. BMC Genomics. 2009, 10: 39-10.1186/1471-2164-10-39.
Doyle JJ, Doyle JL: Isolation of plant DNA from fresh tissue. Focus. 12: 13-15.
Kilian A, Huttner E, Wenzl P, Jaccoud D, Carling J, Caig V, Evers M, Heller-Uszynska K, Cayla C, Patarapuwadol S: The fast and the cheap: SNP and DArT-based whole genome profiling for crop improvement. International Congress In the Wake of the Double Helix: From the Green Revolution to the Gene Revolution: May 27-31 2003. 2005, Bologna, Italy: Avenue Media, 2003: 443-461.
Suat Hui Yeoh, Maintz J, Foley WJ, Moran GF: Comparative SNP diversity among four Eucalyptus species for genes from secondary metabolite biosynthetic pathways. BMC Genomics. 2009, 10: 452-10.1186/1471-2164-10-452.
Vekemans X: AFLP-SURV version 1.0. Laboratoire de Genetique et Ecologie Vegetale. 2002, University Libre de Bruxelles, Belgium