Electron–Electron Double Resonance of Free Radicals in Solution

Journal of Chemical Physics - Tập 48 Số 9 - Trang 4211-4226 - 1968
James S. Hyde1, James C. W. Chien2, Jack H. Freed3
1Varian Associates, Analytical Instrument Division, Palo Alto, California
2Hercules Research Center, Wilmington, Delaware
3Department of Chemistry, Cornell University, Ithaca, New York

Tóm tắt

The technique of electron–electron double resonance, in which one part of the EPR spectrum of a paramagnetic sample is irradiated with an intense microwave field and the effect of this intense field on other parts of the spectrum is determined utilizing a second weak microwave field, has been applied to free radicals in solution. EPR signals detected by the weak microwave source are reduced in intensity when the two frequencies are separated by an integral number of hyperfine intervals. In some cases this reduction is as much as 40%. A bimodal cavity of novel design capable of supporting the two resonant microwave modes is described. A nitroxide radical has been investigated in greatest detail. Two mechanisms have been identified: rapid nuclear relaxation induced by electron–nuclear dipolar (END) interaction, which is dominant at low concentrations and temperatures, and Heisenberg exchange (HE), dominant at high concentrations and temperatures. A theoretical analysis of the relaxation processes is presented which permits extracting the critical relaxation parameters from the experimental data. The main theme of the paper is a description of the basic effects, but there would appear to be a number of analytical or structural applications of this technique.

Từ khóa


Tài liệu tham khảo

1960, Phys. Rev., 118, 939, 10.1103/PhysRev.118.939

1963, Phys. Rev., 129, 2441, 10.1103/PhysRev.129.2441

1964, Phys. Rev., 135, A247, 10.1103/PhysRev.135.A247

1946, Phys. Rev., 70, 474, 10.1103/PhysRev.70.474

1958, Am. J. Phys., 26, 588

1961, Rev. Sci. Instr., 32, 721, 10.1063/1.1717479

1966, Proc. Natl. Acad. Sci. U.S., 55, 8, 10.1073/pnas.55.1.8

1964, J. Chem. Phys., 40, 3117, 10.1063/1.1724957

1965, J. Chem. Phys., 43, 1806, 10.1063/1.1697013

1964, J. Chem. Phys., 40, 1815, 10.1063/1.1725411

1953, Phys. Rev., 91, 1071, 10.1103/PhysRev.91.1071

1965, J. Chem. Phys., 43, 2312, 10.1063/1.1697128

1967, J. Phys. Chem., 71, 38, 10.1021/j100860a006

1967, J. Chem. Phys., 47, 2762, 10.1063/1.1712295

1963, J. Chem. Phys., 39, 326, 10.1063/1.1734250

1966, J. Chem. Phys., 44, 169, 10.1063/1.1726440

1966, J. Chem. Phys., 44, 154, 10.1063/1.1726439

1961, J. Chem. Phys., 34, 756, 10.1063/1.1731672

1962, J. Chem. Phys., 37, 2053, 10.1063/1.1733426

1959, Phys. Rev. Letters, 3, 423, 10.1103/PhysRevLett.3.423

1960, J. Chem. Phys., 27, 1094

1962, Phys. Rev., 126, 1995, 10.1103/PhysRev.126.1995

1966, J. Chem. Phys., 45, 3452, 10.1063/1.1728131

1967, Mol. Phys., 12, 25, 10.1080/00268976700100031

1943, Rev. Mod. Phys., 15, 1, 10.1103/RevModPhys.15.1

1957, J. Am. Chem. Soc., 79, 2086, 10.1021/ja01566a017

1965, Advan. Magnetic Resonance, 1, 89

1965, J. Chem. Phys., 43, 2909, 10.1063/1.1697233

1965, Proc. Natl. Acad. Sci. U.S., 54, 1010, 10.1073/pnas.54.4.1010

1962, Mol. Phys., 5, 241, 10.1080/00268976200100261

1964, J. Chem. Phys., 41, 179, 10.1063/1.1725620

1967, J. Chem. Phys., 47, 3312, 10.1063/1.3192716

1964, J. Chem. Phys., 41, 2077, 10.1063/1.1726208

1966, J. Chem. Phys., 44, 4022, 10.1063/1.1726566