Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe

American Association for the Advancement of Science (AAAS) - Tập 351 Số 6269 - Trang 141-144 - 2016
Li‐Dong Zhao1,2, Gangjian Tan1, Shiqiang Hao3, Jiaqing He4, Yanling Pei2, Hang Chi5, Heng Wang6, Shengkai Gong2, Huibin Xu2, Vinayak P. Dravid3, Ctirad Uher5, G. Jeffrey Snyder3, Chris Wolverton3, Mercouri G. Kanatzidis1
1Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
2School of Materials Science and Engineering, Beihang University, Beijing 100191, China
3Department of Materials Science and Engineering Northwestern University Evanston, IL 60208 (USA)
4Department of Physics, South University of Science and Technology of China, Shenzhen 518055, China
5Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
6Materials Science, California Institute of Technology, Pasadena, CA 91125, USA

Tóm tắt

Heat conversion gets a power boost Thermoelectric materials convert waste heat into electricity, but often achieve high conversion efficiencies only at high temperatures. Zhao et al. tackle this problem by introducing small amounts of sodium to the thermoelectric SnSe (see the Perspective by Behnia). This boosts the power factor, allowing the material to generate more energy while maintaining good conversion efficiency. The effect holds across a wide temperature range, which is attractive for developing new applications. Science , this issue p. 141 ; see also p. 124

Từ khóa


Tài liệu tham khảo

10.1126/science.1158899

10.1038/nnano.2013.129

10.1016/j.jmat.2015.01.001

10.1002/adma.200600527

10.1039/C3EE43099E

10.1126/science.1092963

10.1126/science.1156446

10.1021/ja7110652

10.1038/nature11439

10.1002/anie.200600865

10.1126/science.1159725

10.1038/nature09996

10.1103/PhysRevLett.108.166601

10.1016/j.nanoen.2014.04.012

10.1021/ja403134b

10.1021/ja111199y

10.3906/fiz-0811-9

10.1038/nature13184

Y. I. Ravich B. A. Efimova I. A. Smirnov Semiconducting Lead Chalcogenides (Plenum New York 1970) vol. 5.

10.1126/science.aaa4166

10.1002/pssa.2210830140

G. J. Snyder in Thermoelectrics Handbook: Macro to Nano D. M. Rowe Ed. (CRC/Taylor and Francis Boca Raton FL 2006) chap. 9.

10.1038/ncomms5515

D. M. Rowe CRC Handbook of Thermoelectrics (CRC Press London 1995).

10.1038/nphys3492

10.1063/1.4913260

10.1002/aenm.201500360

10.1002/adma.201004200

10.1021/ja301772w

10.1021/ja500860m

10.1002/adma.201202919

10.1063/1.4907805

10.1039/c4ta01643b

10.1063/1.4880817

10.1134/S0020168506060033

10.1016/j.matlet.2007.04.026

10.1103/PhysRevB.50.17953

10.1103/PhysRevLett.77.3865

10.1103/PhysRevB.54.11169

H. J. Goldsmid Thermoelectric Refrigeration . (Plenum Press 1964) p. 58.

M. S. Dresselhaus Y.-M. Lin S. B. Cronin O. Rabin M. R. Black G. Dresselhaus Quantum wells and quantum wires for potential thermoelectric applications in Recent Trends in Thermoelectric Materials Research III Editor: T. M. Tritt (Academic Press 2001) p.1-121.

10.1016/j.cpc.2006.03.007

Kolomoet N. V., Vinograd M. N., Sysoeva L. M., Valence band of PbTe. Sov. Phys. Semicond. -USSR 1, 1020 (1968).

10.1039/C1EE02612G

10.1021/ja301245b

10.1073/pnas.1403601111