Tissue Engineering Therapy for Cardiovascular Disease

Circulation Research - Tập 92 Số 10 - Trang 1068-1078 - 2003
Helen M. Nugent1, Elazer R. Edelman1
1From the Harvard-MIT Division of Health Sciences and Technology (H.M.N., E.R.E.), Massachusetts Institute of Technology, Cambridge, Mass, and the Cardiovascular Division (E.R.E.), Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, Mass.

Tóm tắt

The present treatments for the loss or failure of cardiovascular function include organ transplantation, surgical reconstruction, mechanical or synthetic devices, or the administration of metabolic products. Although routinely used, these treatments are not without constraints and complications. The emerging and interdisciplinary field of tissue engineering has evolved to provide solutions to tissue creation and repair. Tissue engineering applies the principles of engineering, material science, and biology toward the development of biological substitutes that restore, maintain, or improve tissue function. Progress has been made in engineering the various components of the cardiovascular system, including blood vessels, heart valves, and cardiac muscle. Many pivotal studies have been performed in recent years that may support the move toward the widespread application of tissue-engineered therapy for cardiovascular diseases. The studies discussed include endothelial cell seeding of vascular grafts, tissue-engineered vascular conduits, generation of heart valve leaflets, cardiomyoplasty, genetic manipulation, and in vitro conditions for optimizing tissue-engineered cardiovascular constructs.

Từ khóa


Tài liệu tham khảo

Heart and Stroke Statistical Update. Dallas Tex: American Heart Association; 2002.

10.1136/bmj.308.6923.235

10.1076/apab.106.2.100.4384

10.1016/0741-5214(92)90418-8

Herring M, Gardner A, Glover J. A single staged technique for seeding vascular grafts with autologous endothelium. Surgery. 1978; 84: 498–504.

10.1001/archsurg.1979.01370300033004

10.1097/00000658-197907000-00019

Graham LM, Vinter DW, Ford JW, Kahn RH, Burkel WE, Stanley JC. Cultured autogenous endothelial cell seeding of prosthetic vascular grafts. Surg Forum. 1979; 30: 204–206.

10.1001/archsurg.1980.01380080025005

Graham LM, Burkel WE, Ford JW, Vinter DW, Kahn RH, Stanley JC. Expanded polytetrafluoroethylene vascular prostheses seeded with enzymatically derived and cultured canine endothelial cells. Surgery. 1982; 91: 550–559.

Schmidt SP, Hunter TJ, Sharp WV, Malindzak GS, Evancho MM. Endothelial cell-seeded four-millimeter Dacron vascular grafts: effects of blood flow manipulation through the grafts. J Vasc Surg. 1984; 1: 434–441.

Schmidt SP, Hunter TJ, Hirko M, Belden TA, Evancho MM, Sharp WV, Donovan DL. Small-diameter vascular prostheses: two designs of PTFE and endothelial cell-seeded and nonseeded Dacron. J Vasc Surg. 1985; 2: 292–297.

10.1016/0142-9612(85)90101-2

10.1016/0142-9612(87)90001-9

10.1002/jbm.820210708

10.1002/1097-4636(20000905)51:3<535::AID-JBM31>3.0.CO;2-P

10.1002/jbm.820220403

10.1002/jbm.820221102

10.1016/0142-9612(91)90046-D

10.1002/jbm.820270811

10.1002/jbm.820270409

10.1016/S0022-5223(95)70188-5

10.1016/0142-9612(95)00360-6

10.1016/S0142-9612(96)00160-3

10.1016/0142-9612(96)00037-3

10.1097/00002480-198804000-00003

10.1002/jbm.820250209

10.1073/pnas.84.18.6471

10.1182/blood.V71.3.566.566

10.1016/S0021-9258(18)61053-1

10.1016/0142-9612(96)00028-2

Hubbell JA, Massia SP, Desai NP, Drumheller PD. Endothelial cell-selective materials for tissue engineering in the vascular graft via a new receptor. Biotechniques. 1991; 9: 568–572.

10.1016/S0021-9258(19)49672-5

10.1096/fj.01-0826com

10.1016/S0741-5214(94)70083-4

10.1097/00002480-199709000-00033

10.1016/S0039-6060(99)70025-5

10.1016/S0003-4975(01)02555-3

10.1016/0741-5214(87)90266-7

10.1046/j.1525-1594.2001.025003218.x

10.1002/jcp.1041220311

10.1126/science.2934816

10.1053/ejvs.1999.1004

10.1016/S0003-4975(00)01812-9

10.1016/S0142-9612(00)00148-4

Yannas IV. Natural materials. In: Ratner BD Hoffman AS Schoen FJ Lemons JE eds. Biomaterials Science. San Diego Calif: Academic Press; 1996: 84–94.

O’Brien TK, Gabbay S, Parkes AC, Knight RA, Zalesky PJ. Immunological reactivity to a new glutaraldehyde tanned bovine pericardial heart valve. Trans Am Soc Artif Intern Organs. 1984; 30: 440–444.

10.1016/S0022-5223(20)31465-3

10.1002/jbm.820240307

10.1016/S0950-821X(05)80680-2

10.1007/BF00146862

10.1177/088532829901300305

10.1097/00002480-199609000-00115

10.1016/0022-4804(89)90050-4

10.3109/08941939009140351

Sandusky GE, Badylak SF, Morff RJ. Histological findings after in-vivo placement of small-intestine submucosa vascular grafts and saphenous vein grafts in the carotid artery in dogs. Am J Pathol. 1992; 140: 317–324.

Lantz GC, Badylak SF, Hiles MC, Coffey AC, Geddes LA, Kokini K, Sandusky GE, Morff RJ. Small intestine submucosa as a vascular graft: a review. J Invest Surg. 1993; 19: 465–472.

10.1002/micr.1920150812

10.1038/15062

10.1016/0003-4975(95)00366-S

10.1016/S0890-5096(06)62002-5

10.1111/j.1540-8191.1992.tb00778.x

Curtil A, Pegg DE, Wilson A. repopulation of freeze-dried porcine valves with human fibroblasts and endothelial cells. J Heart Valve Dis. 1997; 6: 296–306.

10.1016/S0022-5223(99)70264-3

10.1002/1097-4636(20010915)56:4<545::AID-JBM1126>3.0.CO;2-V

10.1016/S0022-5223(98)70315-0

10.1126/science.284.5413.489

10.1096/fasebj.12.1.47

10.1161/res.85.12.1173

10.1073/pnas.92.18.8130

10.1161/res.84.4.384

10.1073/pnas.97.12.6722

10.1006/jsre.2001.6198

10.1159/000067207

10.1002/(SICI)1097-4636(19991215)47:4<439::AID-JBM1>3.0.CO;2-O

10.1056/NEJM199608083350607

10.1056/NEJM199305063281801

Mayer JE. Uses of homograft conduits for right ventricle to pulmonary artery connections in the neonatal period. Semin Thorac Cardiovasc Surg. 1995; 7: 130–132.

10.1016/S0022-5223(05)80025-X

10.1161/circ.102.suppl_3.III-50

10.1002/ar.1116

10.1161/circ.102.suppl_3.III-44

10.1186/CVM-2-5-208

10.1016/S0003-4975(01)02851-X

10.1016/S0003-4975(96)00437-7

10.1161/01.cir.0000016722.37138.f2

10.1152/ajpheart.1993.264.5.H1727

10.1038/nm0898-929

10.1177/096368979200100602

10.1146/annurev.physiol.61.1.219

10.1161/circ.100.suppl_2.Ii-63

10.1172/JCI118769

10.1038/35070587

10.1006/jmcc.1998.0882

10.1177/096368979600500113

10.1172/JCI119070

10.1177/096368970000900307

10.1067/mtc.2000.110250

10.1016/S0003-4975(95)00374-6

10.1016/S1053-2498(99)00096-0

10.1067/mtc.2001.112937

10.1006/jmcc.2001.1507

10.1161/hyp.38.6.1413

10.1080/078538902320772061

10.1126/science.8140423

10.1067/mtc.2002.121293

10.1161/circ.101.18.e182

10.1046/j.1445-5994.2002.00206.x

10.1046/j.1525-1594.2001.025003187.x

10.1067/mtc.2002.120716

10.1161/res.90.2.223

10.1161/circ.102.suppl_3.III-56

10.1161/res.90.3.e40

10.1002/jbm.1284

10.1161/circ.104.suppl_1.I-218

10.1073/pnas.97.7.3422

10.1161/circ.103.5.634

10.1038/nm0901-1035

10.1161/circ.105.6.732

10.1073/pnas.032074999

10.1016/S0003-4975(98)00796-6

10.1055/s-2002-32406

10.1016/S0169-409X(98)00025-8

Walluscheck KP, Steinhoff G, Haverich A. Endothelial cell seeding of de-endothelialised human arteries: improvement by adhesion molecule induction and flow-seeding technology. Eur J Vasc Endovasc Surg. 1996; 12: 46–53.

Caplice NM. The artificial artery. Curr Interv Cardiol Rep. 2000; 2: 7–10.

10.1016/S0039-6060(05)80210-7

10.1159/000170195

10.1089/107632701300003241

Papadaki M, McIntire LV, Eskin SG. Effects of shear stress on the growth kinetics of human aortic smooth muscle cells in vitro. Biotechnol Bioeng. 1996; 50: 555.

10.1006/jmcc.1997.0625

10.1111/j.1749-6632.2002.tb04863.x

10.1089/107632700320739

10.3109/10739689509148282

10.1021/ac9912294

10.1073/pnas.040562297