Physicochemical properties of oil in water emulsions prepared with irradiated gum tragacanth in acidic conditions

Journal of Food Measurement and Characterization - Tập 15 - Trang 4735-4746 - 2021
Hoda Godarzi1, Mohammad Amin Mohammadifar2, Aziz Homayouni Rad1, Haniyeh Rasouli Pirouzian1, Fereshteh Ansari3,4,5, Hadi Pourjafar6,7
1Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
2Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
3Research Center for Evidence-Based Medicine, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
4Iranian EBM Centre: A Joanna Briggs Institute Affiliated Group, Tabriz, Iran
5Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
6Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
7Department of Food Sciences, Maragheh University of Medical Sciences, Maragheh, Iran

Tóm tắt

The addition of gum tragacanth (GT) as an emulsifier in oil in water systems can reduce the interfacial tension and stabilize emulsions. The major goal of this study was to investigate the particle size distribution, stability and rheological properties of 10% w/w oil in water emulsion at different pH conditions (2.5, 4, and 5.4) as affected by the addition of 0.5% w/w of previously irradiated (0, 1.5, and 3 kGy) GT. Irradiation treatment affected the stability of emulsions by changing rheological properties and parameters describing particle size. The extent of these differences was dose-dependent. Results indicated that using 1.5 kGy irradiated GT was more effective in providing optimum values of particle size and maximum emulsion stability. The least consistency coefficient (0.38 Pa s) and the most unstable emulsion were achieved in samples with pH 2.5 and the irradiated dose of 3 kGy. There was an increasing trend in the flow behavior index with the increasing irradiation dosage. Emulsions were less stable at pH 2.5 than at higher pH levels (4.5 and 5.5).

Tài liệu tham khảo

H.A. Gavlighi, A.S. Meyer, D.N. Zaidel, M.A. Mohammadifar, J.D. Mikkelsen, Food Hydrocoll. 31(1), 5–14 (2013). https://doi.org/10.1016/j.foodhyd.2012.09.004 H.P. Bais, B. Prithiviraj, A.K. Jha, F.M. Ausubel, J.M. Vivanco, Nature 434, 217–221 (2005). https://doi.org/10.1038/nature03356 A. Homayouni, M. Javadi, F. Ansari, H. Pourjafar, M. Jafarzadeh, A. Barzegar, Food Anal. Methods 11(1), 1–11 (2018). https://doi.org/10.1007/s12161-018-1292-0 S. Ghosh, D. Rousseau, Curr. Opin. Colloid Interface Sci. 16(5), 421–431 (2011). https://doi.org/10.1016/j.cocis.2011.06.006 N. Mollakhalili Meybodi, M.A. Mohammadifar, A. Naseri, J. Food Qual. Hazards Control 1(3), 67–71 (2014). http://jfqhc.ssu.ac.ir/article-1-68-en.html S. Balaghi, M.A. Mohammadifar, A. Zargaraan, H.A. Gavlighi, M. Mohammadi, Food Hydrocoll. 25(7), 1775–1784 (2011). https://doi.org/10.1016/j.foodhyd.2011.04.003 D. Anderson, M. Bridgeman, Phytochemistry 24(10), 2301–2304 (1985). https://doi.org/10.1016/S0031-9422(00)83031-9 S. Moradi, M. Taran, M. Shahlaei, Int. J. Biol. Macromol. 107(Pt B), 2525–2533 (2018). https://doi.org/10.1016/j.ijbiomac.2017.10.129 C.A. Tischer, M. Iacomini, R. Wagner, P.A. Gorin, Carbohydr. Res. 337, 2205–2210 (2002). https://doi.org/10.1016/s0008-6215(02)00296-3 F. Golmohammadi, Tech. J. Eng. Appl. Sci. 3, 3702–3721 (2013). https://www.cabdirect.org/globalhealth/abstract/20143096463 J. Farkas, Trends Food Sci. Technol. 17(4), 148–152 (2006). https://doi.org/10.1016/j.tifs.2005.12.003 H.F. Ramírez-Cahero, M.A. Valdivia-López, Food Chem. 245, 1131–1140 (2018). https://doi.org/10.1016/j.foodchem.2017.11.057 Z. Xu, Y. Sun, Y. Yang, J. Ding, J. Pang, Carbohydr. Polym. 70(4), 444–450 (2007). https://doi.org/10.1016/j.carbpol.2007.05.011 F. Ansari, A. Homayouni, P. Mohsennezhad, A.M. Alivand, H. Pourjafar, Curr. Nutr. Food Sci. 15(5), 1–6 (2020). https://doi.org/10.2174/1573401315666190115161626 M. Marcotte, A.R.T. Hoshahili, H. Ramaswamy, Food Res. Int. 34(8), 695–703 (2001). https://doi.org/10.1016/S0963-9969(01)00091-6 E. Yaseen, T. Herald, F. Aramouni, S. Alavi, Food Res. Int. 38(2), 111–119 (2005). https://doi.org/10.1016/j.foodres.2004.01.013 K. King, R. Gray, Food Hydrocoll. 6(6), 559–569 (1993). https://doi.org/10.1016/S0268-005X(09)80079-9 S. Teimouri, S. Abbasi, N. Sheikh, Food Hydrocoll. 59, 9–16 (2016). https://doi.org/10.1016/j.foodhyd.2015.12.010 S. Balaghi, M.A. Mohammadifar, A. Zargaraan, Food Biophys. 5(1), 59–71 (2010). https://doi.org/10.1007/s11483-009-9144-520 L. Abad, S. Okabe, M. Shibayama, H. Kudo, S. Saiki, C. Aranilla, L. Relleve, A. de la Rosa, Int. J. Biol. Macromol. 42(1), 55–61 (2008). https://doi.org/10.1016/j.ijbiomac.2007.09.007 N. Mollakhalili Meybodi, M.A. Mohammadifar, M. Farhoodi, J.L. Skytte, K. Abdolmaleki, J. Dispers. Sci. Technol. 38(6), 909–916 (2017). https://doi.org/10.1080/01932691.2016.1215250 J. Hwang, J.L. Kokini, J. Texture Stud. 22(2), 123–167 (1991). https://doi.org/10.1111/j.1745-4603.1991.tb00011.x M. Farzi, Z. Emam-Djomeh, M.A. Mohammadifar, Int. J. Biol. Macromol. 57, 76–82 (2013). https://doi.org/10.1016/j.ijbiomac.2013.03.008 S. Blake, D. Deeble, G. Phillips, A. Du Plessey, Food Hydrocoll. 2(5), 407–415 (1988). https://doi.org/10.1016/S0268-005X(88)80005-5 A.J. Aliste, F.F. Vieira, N.L. Del Mastro, Radiat. Phys. Chem. 57(3–6), 305–308 (2000). https://doi.org/10.1016/S0969-806X(99)00471-5 M. Dogan, A. Kayacier, E. Ic, Food Hydrocoll. 21(3), 392–396 (2007). https://doi.org/10.1016/j.foodhyd.2006.04.010 S. Dukhin, J. Sjöblom, D. Wasan, Ø. Sæther, Colloid Surf. A 180(3), 223–234 (2001). https://doi.org/10.1016/S0927-7757(00)00696-8 A.R. Taherian, P. Fustier, H.S. Ramaswamy, J. Food Process Eng. 30(2), 204–224 (2007). https://doi.org/10.1111/j.1745-4530.2007.00109.x R. Buffo, G. Reineccius, G. Oehlert, Food Hydrocoll. 15(1), 53–66 (2001). https://doi.org/10.1016/S0268-005X(00)00050-3 E. Dickinson, Food Hydrocoll. 23(6), 1473–1482 (2009). https://doi.org/10.1016/j.foodhyd.2008.08.005 H. Liu, B. Wang, C.J. Barrow, B. Adhikari, Food Chem. 143, 484–491 (2014). https://doi.org/10.1016/j.foodchem.2013.07.130 S. Alijani, S. Balaghi, M.A. Mohammadifar, Int. J. Biol. Macromol. 49(4), 471–479 (2011). https://doi.org/10.1016/j.ijbiomac.2011.05.030 R. Chanamai, D. McClements, J. Food Sci. 67(1), 120–125 (2002). https://doi.org/10.1111/j.1365-2621.2002.tb11370.x C. Gallegos, P. Partal, J.M. Franco, Am. J. Health Syst. Pharm. 66(2), 162–166 (2009). https://doi.org/10.2146/ajhp080031 M. Nejatian, S. Abbasi, F. Azarikia, Int. J. Biol. Macromol. 160, 846–860 (2020). https://doi.org/10.1016/j.ijbiomac.2020.05.214 D.J. McClements, Food Emulsions: Principles, Practices, and Techniques (CRC Press, Boca Raton, 2015), p. 461 T.G. Mezger, The Rheology Handbook: For Users of Rotational and Oscillatory Rheometers (Vincentz Network GmbH Co & KG, Hannover, 2006), p. 90 E. Chamberlain, M. Rao, Food Hydrocoll. 14(2), 163–171 (2000). https://doi.org/10.1016/S0268-005X(99)00063-6 R. Moreira, F. Chenlo, C. Silva, M.D. Torres, LWT Food Sci. Technol. 84, 764–770 (2017). https://doi.org/10.1016/j.lwt.2017.06.050 Q. Miao, H. Jiang, L. Gao, Y. Cheng, J. Xu, X. Fu, X. Gao, Am. J. Anal. Chem. 9(4), 210–223 (2018). https://doi.org/10.4236/ajac.2018.94017 R.H. Moghaddam, S. Dadfarnia, A.M.H. Shabani, M. Tavakol, Carbohydr. Polym. 206, 352–361 (2019). https://doi.org/10.1016/j.carbpol.2018.10.030 M. Dehghan-Niri, E. Vasheghani-Farahani, M.B. Eslaminejad, M. Tavakol, F. Bagheri, Mater. Sci. Eng. C 114, 111073 (2020). https://doi.org/10.1016/j.msec.2020.111073 B. Sharma, S. Thakur, G. Mamba, R.K. Gupta, V.K. Gupta, V.K. Thakur, J. Environ. Chem. Eng. 9(1), 104608 (2021). https://doi.org/10.1016/j.jece.2020.104608