Deciphering the peptide iodination code: Influence on subsequent gas-phase radical generation with photodissociation ESI-MS
Tóm tắt
Iodination of tyrosine was recently discovered as a useful method for generating radical peptides via photodissociation of carbon-iodine bonds by an ultraviolet photon in the gas phase. The subsequent fragmentation behavior of the resulting odd-electron peptides is largely controlled by the radical. Although previous experiments have focused on mono-iodination of tyrosine, peptides and proteins can also be multiply iodinated. Tyrosine and, to a lesser extent, histidine can both be iodinated or doubly iodinated. The behavior of doubly iodinated residues is explored under conditions where the sites of iodination are carefully controlled. It is found that radical peptides generated by the loss of a single iodine from doubly iodinated tyrosine behave effectively identically to singly iodinated peptides. This suggests that the remaining iodine does not interfere with radical directed dissociation pathways. In contrast, the concerted loss of two iodines from doubly iodinated peptides yields substantially different results that suggest that radical recombination can occur. However, sequential activation can be used to generate multiple usable radicals in different steps of an MS
n
experiment. Furthermore, it is demonstrated that in actual peptides, the rate of iodination for tyrosine versus mono-iodotyrosine cannot be predicted easily a priori. In other words, previous assumptions that mono-iodination of tyrosine is the rate-limiting step to the formation of doubly iodinated tyrosine are incorrect.
Tài liệu tham khảo
Ramachandran, L. K. Protein-Iodine Interaction. Chem. Rev. 1956, 56, 109–218.
Elder, J. H.; Pickett, R. A.; Hampton, J.; Lerner, R. A. Radioiodination of Proteins in Single Polyacrylamide-Gel Slices: Tryptic Peptide Analysis of All Major Members of Complex Multicomponent Systems Using Microgram Quantities of Total Protein. J. Biol. Chem. 1977, 252, 6510–6515.
Ghosh, D.; Erman, M.; Sawicki, M.; Lala, P.; Weeks, D. R.; Li, N. Y.; Pangborn, W.; Thiel, D. J.; Jornvall, H.; Gutierrez, R.; Eyzaguirre, J. Determination of a Protein Structure by Iodination: The Structure of Iodinated Acetylxylan Esterase. Acta Crystallogr. D Biol. Crystallogr. 1999, 55, 779–784.
Coombs, K.; Brown, D. T. Topological Organization of Sindbis Virus Capsid Protein in Isolated Nucleocapsids. Virus Res. 1987, 7, 131–149.
McConahey, P. J.; Dixon, F. J. A Method of Trace Iodination of Proteins for Immunologic Studies. Int. Arch. Allergy Appl. Immunol. 1966, 29, 185–189.
Adam, M. J.; Wilbur, D. S. Radiohalogens for Imaging and Therapy. Chem. Soc. Rev. 2005, 34, 153–163.
Heneine, I. F.; Heneine, L. G. D. Stepwise Iodination: A General Procedure for Detoxification of Proteins Suitable for Vaccine Development and Antiserum Production. Biologicals 1998, 26, 25–32.
Li, C. H. Kinetics and Mechanism of 2,6-Di-iodotyrosine Formation. J. Am. Chem. Soc. 1942, 64, 1147–1152.
Mayberry, W. E.; Bertoli, D.; Rall, J. E. Kinetics of Iodination. I. Comparison of Kinetics of Iodination of N-Acetyl-L-Tyrosine + N-Acetyl-3-Iodo-L-Tyrosine. J. Am. Chem. Soc. 1964, 86, 5302–5307.
Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Electrospray Ionization for Mass-Spectrometry of Large Biomolecules. Science 1989, 246, 64–71.
Zenobi, R.; Knochenmuss, R. Ion Formation in MALDI Mass Spectrometry. Mass Spectrom. Rev. 1998, 17, 337–366.
Wells, J. M.; McLuckey, S. A. Collision-Induced Dissociation (CID) of Peptides and Proteins. Biol. Mass Spectrom. 2005, 402, 148–185.
Zubarev, R. A.; Horn, D. M.; Fridriksson, E. K.; Kelleher, N. L.; Kruger, N. A.; Lewis, M. A.; Carpenter, B. K.; McLafferty, F. W. Electron Capture Dissociation for Structural Characterization of Multiply Charged Protein Cations. Anal. Chem. 2000, 72, 563–573.
Syka, J. E. P.; Coon, J. J.; Schroeder, M. J.; Shabanowitz, J.; Hunt, D. F. Peptide and Protein Sequence Analysis by Electron Transfer Dissociation Mass Spectrometry. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 9528–9533.
Thompson, M. S.; Cui, W. D.; Reilly, J. P. Fragmentation of Singly Charged Peptide Ions by Photodissociation at lambda = 157 nm. Angew. Chem. Int. Ed. 2004, 43, 4791–4794.
Wilson, J. J.; Kirkovits, G. J.; Sessler, J. L.; Brodbelt, J. S. Photodissociation of Non-covalent Peptide-Crown Ether Complexes. J. Am. Soc. Mass Spectrom. 2008, 19, 257–260.
Little, D. P.; Speir, J. P.; Senko, M. W.; Oconnor, P. B.; McLafferty, F. W. Infrared Multiphoton Dissociation of Large Multiply-Charged Ions for Biomolecule Sequencing. Anal. Chem. 1994, 66, 2809–2815.
Price, W. D.; Schnier, P. D.; Williams, E. R. Binding Energies of the Proton-Bound Amino Acid Dimers Gly·Gly, Ala·Ala, Gly·Ala, and Lys·Lys Measured by Blackbody Infrared Radiative Dissociation. J. Chem. Phys. B 1997, 101, 664–673.
Ly, T.; Julian, R. R. Residue-Specific Radical-Directed Dissociation of Whole Proteins in the Gas Phase. J. Am. Chem. Soc. 2008, 130, 351–358.
Ly, T.; Julian, R. R. submitted for publication.
Diedrich, J. K.; Julian, R. R. Site Specific Radical Directed Dissociation of Peptides at Phosphorylated Residues. J. Am. Chem. Soc. 2008, 130, 12211–12213.
Sun, Q.; Nelson, H.; Ly, T.; Stoltz, B. M.; Julian, R. R. J. Proteome Res. Articles ASAP, doi:10.1021/pr800592t.
Hodyss, R.; Cox, H. A.; Beauchamp, J. L. Bioconjugates for tunable peptide fragmentation: Free radical initiated peptide sequencing (FRIPS). J. Am. Chem. Soc. 2005, 127, 12436–12437.
Yin, H.; Chacon, A.; Porter, N. A.; Yin, H. Y.; Masterson, D. S. Free Radical-Induced Site-Specific Peptide Cleavage in the Gas Phase: Low-Energy Collision-Induced Dissociation in ESI- and MALDI Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2007, 18, 807–816.
Laskin, J.; Yang, Z. B.; Lam, C.; Chu, I. K. Charge-Remote Fragmentation of Odd-Electron Peptide Ions. Anal. Chem. 2007, 79, 6607–6614.
Laskin, J.; Yang, Z.; Chu, I. K. Energetics and Dynamics of Electron Transfer and Proton Transfer in Dissociation of MetalIII(salen)-Peptide Complexes in the Gas Phase. J. Am. Chem. Soc. 2008, 130, 3218–3230.
Barlow, C. K.; Wee, S.; McFadyen, W. D.; O’Hair, R. A. J. Designing Copper(II) Ternary Complexes to Generate Radical Cations of Peptides in the Gas Phase: Role of the Auxiliary Ligand. Dalton Transact. 2004, 20, 3199–3204.
Wee, S.; O’Hair, R. A. J.; McFadyen, W. D. The Role of the Position of the Basic Residue in the Generation and Fragmentation of Peptide Radical Cations. Int. J. Mass Spectrom. 2006, 249, 171–183.
Bagheri-Majdi, E.; Ke, Y. Y.; Orlova, G.; Chu, I. K.; Hopkinson, A. C.; Siu, K. W. M. Copper-Mediated Peptide Radical Ions in the Gas Phase. J. Chem. Phys. B 2004, 108, 11170–11181.
Siu, C. K.; Ke, Y.; Guo, Y.; Hopkinson, A. C.; Siu, K. W. M. Dissociations of Copper(II)-Containing Complexes of Aromatic Amino Acids: Radical Cations of Tryptophan, Tyrosine, and Phenylalanine. Phys. Chem. Chem. Phys. 2008, 10, 5908–5918.
Hunter, W. M.; Greenwood, F. C. Preparation of Iodine-131 Labelled Human Growth Hormone of High Specific Activity. Nature 1962, 194, 495–496.
Thoen, K. K.; Perez, J.; Ferra, J. J.; Kenttamaa, H. I. Synthesis of Charged Phenyl Radicals and Biradicals by Laser Photolysis in a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer. J. Am. Soc. Mass Spectrom. 1998, 9, 1135–1140.
Li, R. M.; Smith, R. L.; Kenttamaa, H. I. Fluorine Substitution Enhances the Reactivity of Substituted Phenyl Radicals Toward Organic Hydrogen Atom Donors. J. Am. Chem. Soc. 1996, 118, 5056–5061.