Ultraviolet-visible absorption of small silver clusters in neon: Agn (n = 1–9)

Journal of Chemical Physics - Tập 134 Số 18 - 2011
S. Lecoultre1, A. Rydlo1, J. Buttet1, Christian Félix1, Stefan Gilb1, W. Harbich1
1École Polytechnique Fédérale de Lausanne Institut de Physique de la Matiére Condensèe, , 1015 Lausanne, Switzerland

Tóm tắt

We present optical absorption and fluorescence spectra in the UV-visible range of size selected neutral Agn clusters (n = 1-9) in solid neon. Rich and detailed optical spectra are found with linewidths as small as 50 meV. These spectra are compared to time dependent density functional theory implemented in the TURBOMOLE package. Excellent agreement between theory and experiment is achieved in particular for the dominant spectroscopic features at photon energies below 4.5 eV. This allows a clear attribution of the observed electronic transitions to specific isomers. Optical transitions associated to the s-electrons are concentrated in the energy range between 3 and 4 eV and well separated from transitions of the d-electrons. This is in contrast to the other coinage metals (Au and Cu) which show a strong coupling of the d-electrons.

Từ khóa


Tài liệu tham khảo

1978, Inorg. Chem., 17, 155, 10.1021/ic50179a029

1977, Inorg. Chem., 16, 2450, 10.1021/ic50176a005

1990, J. Chem. Phys., 93, 8535, 10.1063/1.459291

1992, Int. J. Mod. Phys. B, 6, 3767, 10.1142/S0217979292001821

1993, Phys. Rev. B, 47, 10706, 10.1103/PhysRevB.47.10706

2006, Rev. Sci. Instrum., 77, 113103, 10.1063/1.2369640

2008, J. Chem. Phys., 129, 194108, 10.1063/1.3013557

1999, Eur. Phys. J. D, 9, 183, 10.1007/s100530050423

1999, J. Chem. Phys., 110, 3876, 10.1063/1.478242

2001, J. Chem. Phys., 115, 10450, 10.1063/1.1415077

1999, Phys. Rev. A, 60, 3809, 10.1103/PhysRevA.60.3809

2005, Phys. Rev. B, 72, 085445, 10.1103/PhysRevB.72.085445

2007, Phys. Rev. B, 75, 233411, 10.1103/PhysRevB.75.233411

2007, J. Phys. Chem. C, 111, 4756, 10.1021/jp067634y

2008, J. Phys. Chem. C, 112, 11272, 10.1021/jp802707r

2009, Phys. Rev. B, 79, 155419, 10.1103/PhysRevB.79.155419

1996, Surf. Rev. Lett., 3, 1147, 10.1142/S0218625X96002059

2011, J. Chem. Phys., 134, 074303, 10.1063/1.3552077

2011, J. Chem. Phys., 134, 074302, 10.1063/1.3537739

1988, Phys. Rev. A, 38, 3098, 10.1103/PhysRevA.38.3098

1988, Phys. Rev. B, 37, 785, 10.1103/PhysRevB.37.785

2005, Phys. Chem. Chem. Phys., 7, 3297, 10.1039/b508541a

1995, J. Chem. Phys., 102, 346, 10.1063/1.469408

2004, Phys. Rev. B, 70, 165403, 10.1103/PhysRevB.70.165403

1996, Chem. Phys. Lett., 256, 454, 10.1016/0009-2614(96)00440-X

1989, Chem. Phys. Lett., 162, 165, 10.1016/0009-2614(89)85118-8

1985, Surf. Sci., 156, 777, 10.1016/0039-6028(85)90249-3

2005, Chem. Phys., 312, 89, 10.1016/j.chemphys.2004.11.024

1982, Inorg. Chem., 21, 1755, 10.1021/ic00135a011

1993, J. Chem. Phys., 99, 5712, 10.1063/1.465920

1986, Chem. Rev., 86, 1049, 10.1021/cr00076a005

1993, J. Chem. Phys., 98, 2699, 10.1063/1.464151

1984, Ber. Bunsenges. Phys. Chem., 88, 492, 10.1002/bbpc.19840880515

1954, Arkiv Fysik, 9, 385

1966, Nature (London), 209, 1300, 10.1038/2091300a0

2007, J. Chem. Phys., 126, 204507, 10.1063/1.2741547

2000, Chem. Phys. Lett., 320, 59, 10.1016/S0009-2614(00)00211-6

1999, Eur. Phys. J. D, 9, 11, 10.1007/PL00010922

1999, Chem. Phys. Lett., 313, 105, 10.1016/S0009-2614(99)01034-9

2002, J. Chem. Phys., 116, 3263, 10.1063/1.1424310

2001, Phys. Rev. Lett., 86, 2992, 10.1103/PhysRevLett.86.2992

2004, Phys. Rev. A, 70, 041201, 10.1103/PhysRevA.70.041201

2004, J. Chem. Phys., 121, 8466, 10.1063/1.1789473

2005, Phys. Rev. A, 71, 015201, 10.1103/PhysRevA.71.015201

2005, Handbook of Basic Atomic Spectroscopic Data

1974, J. Chem. Phys., 60, 89, 10.1063/1.1680811