Strong coupling between surface plasmon polaritons and Sulforhodamine 101 dye
Tóm tắt
We demonstrate a strong coupling between surface plasmon polaritons and Sulforhodamine 101 dye molecules. Dispersion curves for surface plasmon polaritons on samples with a thin layer of silver covered with Sulforhodamine 101 molecules embedded in SU-8 polymer are obtained experimentally by reflectometry measurements and compared to the dispersion of samples without molecules. Clear Rabi splittings, with energies up to 360 and 190 meV, are observed at the positions of the dye absorption maxima. The split energies are dependent on the number of Sulforhodamine 101 molecules involved in the coupling process. Transfer matrix and coupled oscillator methods are used to model the studied multilayer structures with a great agreement with the experiments. Detection of the scattered radiation after the propagation provides another way to obtain the dispersion relation of the surface plasmon polaritons and, thus, provides insight into dynamics of the surface plasmon polariton/dye interaction, beyond the refrectometry measurements. PACS: 42.50.Hz, 33.80.-b, 78.67.-n
Tài liệu tham khảo
Vahala KJ: Optical microcavities. Nature 2003, 424: 839–846. 10.1038/nature01939
Boardman AD: Electromagnetic Surface Modes. New York: Wiley; 1982.
Barnes WL, Dereux A, Ebbesen TW: Surface plasmon subwavelength optics. Nature 2003, 424: 824–830. 10.1038/nature01937
Zayats AV, Smolyaninov II, Maradudin AA: Nano-optics of surface plasmon polaritons. Phys Rep 2005, 408: 131–314. 10.1016/j.physrep.2004.11.001
Kneipp K, Kneipp H, Corio P, Brown SDM, Shafer K, Motz J, Perelman LT, Hanlon EB, Marucci A, Dresselhaus G, Dresselhaus MS: Surface-enhanced and normal stokes and anti-stokes Raman spectroscopy of single-walled carbon nanotubes. Phys Rev Lett 2000, 84: 2470–2473.
Kühn S, Håkanson U, Rogobete L, Sandoghdar V: Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys Rev Lett 2006, 97: 017402.
Tam F, Goodrich GP, Johnson BR, Halas NJ: Plasmonic enhancement of molecular fluorescence. Nano Lett 2007, 7: 496–501. 10.1021/nl062901x
Hakala TK, Toppari JJ, Pettersson M, Kuzyk A, Tikkanen H, Kunttu H, Törmä P: Frequency conversion of propagating surface plasmon polaritons by organic molecules. Appl Phys Lett 2008, 93: 123307. 10.1063/1.2987726
Wu C, Khanikaev AB, Shvets G: Broadband slow light metamaterial based on a double-continuum Fano resonance. Phys Rev Lett 2011, 106: 107403.
Andrew P, Barnes WL: Energy transfer across a metal film mediated by surface plasmon polaritons. Science 2004, 306: 1002–1005. 10.1126/science.1102992
Kuzyk A, Pettersson M, Toppari JJ, Hakala TK, Tikkanen H, Kunttu H, Törmä P: Molecular coupling of light with plasmonic waveguides. Opt Exp 2007, 15: 9908. 10.1364/OE.15.009908
Ditlbacher H, Krenn JR, Schider G, Leitner A, Aussenegg FR: Fluorescence imaging of surface plasmon field. Appl Phys Lett 2002, 81: 404–406.
Weisbuch C, Nishioka M, Ishikawa A, Arakawa Y: Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys Rev Lett 1992, 69: 3314–3317. 10.1103/PhysRevLett.69.3314
Lidzey DG, Bradley DDC, Skolnick MS, Virgili T, Walker S, Whittaker DM: Strong exciton-photon coupling in an organic semiconductor microcavity. Nature 1998, 395: 53–55. 10.1038/25692
Khitrova G, Gibbs HM, Kira M, Koch SW, Scherer A: Vacuum Rabi splitting in semiconductors. Nature Phys 2006, 2: 81–90. 10.1038/nphys227
Pockrand I, Brillante A, Mobius D: Exciton surface-plasmon coupling-an experimental investigation. J Chem Phys 1982, 77: 6289–6295. 10.1063/1.443834
Bellessa J, Bonnand C, Plenet JC, Mugnier J: Strong coupling between surface plasmons and excitons in an organic microcavity. Phys Rev Lett 2004, 93: 036404.
Hakala TK, Toppari JJ, Pettersson M, Kuzyk A, Tikkanen H, Kunttu H, Törmä P: Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and Rhodamine6G molecules. Phys Rev Lett 2009, 103: 053602.
Moerland RJ, Hakala TK, Väkeväinen AI, Eskelinen AP, Sharma G, Toppari JJ, Kuzyk A, Pettersson M, Kunttu H, Törmä : Vacuum Rabi splitting for surface plasmon polaritons and Rhodamine 6 G molecules. In Metamaterials VI, (SPIE Optics and Optoelectronics) Edited by: Kuzmiak V, Markos P, Szoplik T. 2011, 8070. SPIE2011 SPIE2011
Valmorra F, Bröll M, Schwaiger S, Welzel N, Heitmann D, Mendacha S: Strong coupling between surface plasmon polariton and laser dye rhodamine 800. Appl Phys Lett 2011, 99: 051110. 10.1063/1.3619845
Gomez DE, Vernon KC, Mulvaney P, Davis TJ: Surface Plasmon mediated Strong exciton-photon coupling in semiconductor nanocrystals. Nano Lett 2010, 10: 274–278. 10.1021/nl903455z
Gomez DE, Vernon KC, Mulvaney P, Davis TJ: Coherent superposition of exciton states in quantum dots induced by surface plasmons. Appl Phys Lett 2010, 96: 073108. 10.1063/1.3313935
Motyka MA, Lakhtakia A: Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. J Nanophoton 2008, 2: 021910. Part II. J. Nanophoton. 2009, 3: 033502; Lahktakia A, Jen Y-J, Lin C-F: Part III. J. Nanophoton. 2009, 3: 033506; Faryad M, Polo Jr. JA, Lakhtakia A: Part IV., J. Nanophoton. 2010, 4: 043505 Part II. J. Nanophoton. 2009, 3: 033502; Lahktakia A, Jen Y-J, Lin C-F: Part III.J. Nanophoton. 2009, 3: 033506; Faryad M, Polo Jr. JA, Lakhtakia A: Part IV., J. Nanophoton. 2010, 4: 043505 10.1117/1.3033757
Skolnick MS, Fisher TA, Whittaker DM: Strong coupling phenomena in quantum microcavity structures. Semicond Sci Thecnol 1998, 13: 645–669. 10.1088/0268-1242/13/7/003
Harbecke B: Coherent and incoherent reflection and transmission of multilayer structures. Appl Phys B 1986, 39: 165–170. 10.1007/BF00697414
Christy RW, Johnson PB: Optical constants of the noble metals. Phys Rev B 1972, 6: 4370–4379. 10.1103/PhysRevB.6.4370
Drachev VP, Chettiar UK, Kildishev AV, Yuan HK, Cai W, Shalaev VM: The Ag dielectric function in plasmonic metamaterials. Opt Exp 2008, 16: 1187.
Raether H: Surface plasmons on smooth and rough surfaces and on grating. New York: Springer-Verlag; 1988.
Maier SA: Plasmonics. Fundamentals and applications. New York: Springer; 2007.
Sivuhin VD: General physics course. Optics. Moscow: Nauka; 1979.
Agranovich VM, Litinskaia M, Lidzey DG: Cavity polaritons in microcavities containing disordered organic semiconductors. Phys Rev B 2003, 67: 085311.
Michetti P, La Rocca GC: Exciton-phonon scattering and photoexcitation dynamics in J -aggregate microcavities. Phys Rev B 2009, 79: 035325.