Inkjet Printing of Super Yellow: Ink Formulation, Film Optimization, OLEDs Fabrication, and Transient Electroluminescence

Scientific Reports - Tập 9 Số 1
C. Amruth1, Marek Zdzisław Szymański2, Beata Łuszczyńska1, Jacek Ulański1
1Department of Molecular Physics, Lodz University of Technology, 90-924 Lodz, Poland
2Department of Engineering and Chemical Sciences, Karlstad University, SE-651 88 Karlstad, Sweden

Tóm tắt

AbstractInkjet printing technique allows manufacturing low cost organic light emitting diodes (OLEDs) in ambient conditions. The above approach enables upscaling of the OLEDs fabrication process which, as a result, would become faster than conventionally used vacuum based processing techniques. In this work, we use the inkjet printing technique to investigate the formation of thin active layers of well-known light emitting polymer material: Super Yellow (poly(para-phenylene vinylene) copolymer). We develop the formulation of Super Yellow ink, containing non-chlorinated solvents and allowing stable jetting. Optimization of ink composition and printing resolution were performed, until good quality films suitable for OLEDs were obtained. Fabricated OLEDs have shown a remarkable characteristics of performance, similar to the OLEDs fabricated by means of spin coating technique. We checked that, the values of mobility of the charge carriers in the printed films, measured by transient electroluminescence, are similar to the values of mobility measured in spin coated films. Our contribution provides a complete framework for inkjet printing of high quality Super Yellow films for OLEDs. The description of this method can be used to obtain efficient printed OLEDs both in academic and in industrial settings.

Từ khóa


Tài liệu tham khảo

Park, J. W., Shin, D. C. & Park, S. H. Large-area OLED lightings and their applications. Semiconductor Science and Technology 26, 034002 (2011).

Lee, S., Kwon, J. H., Kwon, S. & Choi, K. C. A Review of Flexible OLEDs Toward Highly Durable Unusual Displays. IEEE Transactions on Electron Devices 64, 1922–1931, https://doi.org/10.1109/TED.2017.2647964 (2017).

Choi, S. et al. Clothing-shaped Organic Light-emitting Devices (OLEDs) for Wearable Displays. SID Symposium Digest of Technical Papers 49, 486–488, https://doi.org/10.1002/sdtp.12607 (2018).

Bhatnagar, P. K. Organic Light-Emitting Diodes—A Review in Nanomaterials and Their Applications (ed Zishan Husain Khan) 261–287 (Springer Singapore 2018).

Hast, J. et al. Invited Paper: Roll-to-Roll Manufacturing of Printed OLEDs. SID Symposium Digest of Technical Papers 44, 192–195, https://doi.org/10.1002/j.2168-0159.2013.tb06176.x (2013).

Tekoglu, S., Hernandez-Sosa, G., Kluge, E., Lemmer, U. & Mechau, N. Gravure printed flexible small-molecule organic light emitting diodes. Organic Electronics 14, 3493–3499, https://doi.org/10.1016/j.orgel.2013.09.027 (2013).

Cao, X. et al. Fully Screen-Printed, Large-Area, and Flexible Active-Matrix Electrochromic Displays Using Carbon Nanotube Thin-Film Transistors. ACS Nano 10, 9816–9822, https://doi.org/10.1021/acsnano.6b05368 (2016).

Benjamin Thomas, M., Tim, C., Davide, D. & Chris, P. Flexographic printing of ultra-thin semiconductor polymer layers. Translational Materials Research 3, 015001 (2016).

C, A., Luszczynska, B., Dupont, B. G. R. & Sieradzki, Z. Inkjet Printing Technique and Its Application in Organic Light Emitting Diodes. Display and Imaging 2, 339–358 (2017).

Zhan, Z., An, J., Wei, Y., Tran, V. T. & Du, H. Inkjet-printed optoelectronics. Nanoscale 9, 965–993, https://doi.org/10.1039/C6NR08220C (2017).

Madigan, C., Van Slyke, S. & Vronsky, E. Inkjet printing equipment for organic LED mass production (2015).

Lan, L. et al. Inkjet printing for electroluminescent devices: emissive materials, film formation, and display prototypes. Frontiers of Optoelectronics 10, 329–352, https://doi.org/10.1007/s12200-017-0765-x (2017).

Mattana, G. et al. Inkjet-Printing: A New Fabrication Technology for Organic Transistors. Advanced Materials Technologies 2, 1700063, https://doi.org/10.1002/admt.201700063 (2017).

Shin, P., Sung, J. & Lee, M. H. Control of droplet formation for low viscosity fluid by double waveforms applied to a piezoelectric inkjet nozzle. 51, 797–804, https://doi.org/10.1016/j.microrel.2010.11.017 (2011).

Eggenhuisen, T. M., Coenen, M. J. J., Slaats, M. W. L. & Groen, W. A. arge Area Inkjet Printing for Organic Photovoltaics and Organic Light Emitting Diodes Using Non-Halogenated Ink Formulations. Journal of Imaging Science and Technology 58, 40402-40401–40402-40406, https://doi.org/10.2352/J.ImagingSci.Technol.2014.58.4.040402 (2014).

Ely, F. et al. Patterning quality control of inkjet printed PEDOT:PSS films by wetting properties. Synthetic Metals 161, 2129–2134, https://doi.org/10.1016/j.synthmet.2011.08.014 (2011).

Gambino, S., Bansal, A. K. & Samuel, I. D. W. Photophysical and charge-transporting properties of the copolymer SuperYellow. Organic Electronics 14, 1980–1987, https://doi.org/10.1016/j.orgel.2013.03.038 (2013).

Höfle, S. et al. Influence of the Emission Layer Thickness on the Optoelectronic Properties of Solution Processed Organic Light-Emitting Diodes. ACS Photonics 1, 968–973, https://doi.org/10.1021/ph500186m (2014).

Burns, S., MacLeod, J., Trang Do, T., Sonar, P. & Yambem, S. D. Effect of thermal annealing Super Yellow emissive layer on efficiency of OLEDs. Scientific reports 7, 40805–40805, https://doi.org/10.1038/srep40805 (2017).

Karl, M. et al. Flexible and ultra-lightweight polymer membrane lasers. Nature Communications 9, 1525, https://doi.org/10.1038/s41467-018-03874-w (2018).

Tseng, S. R. et al. Electron transport and electroluminescent efficiency of conjugated polymers. Synthetic Metals 159, 137–141, https://doi.org/10.1016/j.synthmet.2008.08.017 (2009).

Shu, Z., Beckert, E., Eberhardt, R. & Tünnermann, A. ITO-free, inkjet-printed transparent organic light-emitting diodes with a single inkjet-printed Al:ZnO:PEI interlayer for sensing applications. Journal of Materials Chemistry C 5, 11590–11597, https://doi.org/10.1039/C7TC04084A (2017).

Hoath, S. D. Fundamentals of inkjet printing: the science of inkjet and droplets (Germany: Wiley-VCH Verlag GmbH & Co. KGaA 2005).

Teichler, A., Eckardt, R., Friebe, C., Perelaer, J. & Schubert, U. S. Film formation properties of inkjet printed poly(phenylene-ethynylene)-poly(phenylene-vinylene)s. Thin Solid Films 519, 3695–3702, https://doi.org/10.1016/j.tsf.2011.01.274 (2011).

Liu, H. et al. Line printing solution-processable small molecules with uniform surface profile via ink-jet printer. Journal of colloid and interface science 465, 106–111, https://doi.org/10.1016/j.jcis.2015.11.067 (2016).

Grimaldi, I. A. et al. Inkjet printed perylene diimide based OTFTs: Effect of the solvent mixture and the printing parameters on film morphology. Synthetic Metals 161, 2618–2622, https://doi.org/10.1016/j.synthmet.2011.08.004 (2012).

Fromm, J. E. Numerical Calculation of the Fluid Dynamics of Drop-on-Demand Jets. IBM Journal of Research and Development 28, 322–333, https://doi.org/10.1147/rd.283.0322 (1984).

Jang, D., Kim, D. & Moon, J. Influence of fluid physical properties on ink-jet printability. Langmuir: the ACS journal of surfaces and colloids 25, 2629–2635, https://doi.org/10.1021/la900059m (2009).

Adly, N. et al. Printed microelectrode arrays on soft materials: from PDMS to hydrogels. npj Flexible. Electronics 2, 15, https://doi.org/10.1038/s41528-018-0027-z (2018).

Singh, A., Katiyar, M. & Garg, A. Understanding the formation of PEDOT:PSS films by ink-jet printing for organic solar cell applications. RSC Advances 5, 78677–78685, https://doi.org/10.1039/C5RA11032G (2015).

McGehee, M. D. & Heeger, A. J. Semiconducting (Conjugated) Polymers as Materials for Solid-State Lasers. Advanced Materials 12, 1655–1668, 10.1002/1521-4095(200011)12:22<1655::AID-ADMA1655>3.0.CO;2-2 (2000).

Albrecht, K. et al. Thermally activated delayed fluorescence OLEDs with fully solution processed organic layers exhibiting nearly 10% external quantum efficiency. Chemical Communications 53, 2439–2442, https://doi.org/10.1039/C6CC09275F (2017).

Won, H. L. et al. Improvement of charge balance, recombination zone confinement, and low efficiency roll-off in green phosphorescent OLEDs by altering electron transport layer thickness. Materials Research Express 5, 076201 (2018).

Yap, C. C., Yahaya, M. & Salleh, M. M. Influence of thickness of functional layer on performance of organic salt-doped OLED with ITO/PVK:PBD:TBAPF6/Al structure. Current Applied Physics 8, 637–644, https://doi.org/10.1016/j.cap.2007.11.006 (2008).

Huang, J., Blochwitz-Nimoth, J., Pfeiffer, M. & Leo, K. Influence of the thickness and doping of the emission layer on the performance of organic light-emitting diodes with PiN structure. Journal of Applied Physics 93, 838–844, https://doi.org/10.1063/1.1533838 (2003).

Tiwari, S. & Greenham, N. C. Charge mobility measurement techniques in organic semiconductors. Optical and Quantum Electronics 41, 69–89, https://doi.org/10.1007/s11082-009-9323-0 (2009).

Teng, M.-Y. et al. Electron mobility determination of efficient phosphorescent iridium complexes with tetraphenylimidodiphosphinate ligand via transient electroluminescence method. Applied Physics Letters 100, 073303, https://doi.org/10.1063/1.3684971 (2012).

Park, H., Shin, D.-S., Yu, H.-S. & Chae, H.-B. Electron mobility in tris(8-hydroxyquinoline)aluminum (Alq3) films by transient electroluminescence from single layer organic light emitting diodes. Applied Physics Letters 90, 202103, https://doi.org/10.1063/1.2734386 (2007).

Jang, J. W., Lee, C. E., Lee, D. W. & Jin, J. I. Transient electroluminescence study of mobility balancing in organic light-emitting diodes based on poly(p-phenylenevinylene) derivatives. Solid State Communications 130, 265–268, https://doi.org/10.1016/j.ssc.2004.01.029 (2004).

Xiaohong, C. et al. Transient electroluminescence of molecularly doped poly(N -vinylcarbozole) light-emitting diodes. Journal of Physics D: Applied Physics 36, 2054 (2003).

Tripathi, A. K. & Ashish Mohapatra, Y. N. Mobility with negative coefficient in Poole–Frenkel field dependence in conjugated polymers: Role of injected hot electrons. Organic Electronics 11, 1753–1758, https://doi.org/10.1016/j.orgel.2010.07.019 (2010).

Musubu, I. et al. Method of Measuring Charge Carrier Mobility in Organic Light-Emitting Diodes Using Fast Transient Electroluminescence Responses. Japanese Journal of Applied Physics 41, 2252 (2002).

Mu, H., Reddy, I., Hunt, J., Severs, P. & Patil, S. Fabrication and optical modulation of top-emitting yellow light polymer light-emitting diodes on the FR4 board. Thin Solid Films 519, 841–845, https://doi.org/10.1016/j.tsf.2010.08.137 (2010).

Pasveer, W. F. et al. Unified Description of Charge-Carrier Mobilities in Disordered Semiconducting Polymers. Physical Review Letters 94, 206601, https://doi.org/10.1103/PhysRevLett.94.206601 (2005).

Chen, Z. & Ma, D. Effects of doped dye on the charge carrier injection, transport, and electroluminescent performance in polymeric light-emitting diodes. Journal of Applied Physics 102, 024510, https://doi.org/10.1063/1.2759189 (2007).

Seok, J. Y. & Yang, M. A Novel Blade-Jet Coating Method for Achieving Ultrathin, Uniform Film toward All-Solution-Processed Large-Area Organic Light-Emitting Diodes. Advanced Materials Technologies 1, 1600029, https://doi.org/10.1002/admt.201600029 (2016).

Tseng, S.-R., Meng, H.-F., Lee, K.-C. & Horng, S.-F. Multilayer polymer light-emitting diodes by blade coating method. Applied Physics Letters 93, 153308, https://doi.org/10.1063/1.2999541 (2008).

Burns, S., MacLeod, J., Trang Do, T., Sonar, P. & Yambem, S. D. Effect of thermal annealing Super Yellow emissive layer on efficiency of OLEDs. Scientific Reports 7, 40805, https://doi.org/10.1038/srep40805 (2017).

Hassan, M. U. et al. Highly efficient PLEDs based on poly(9,9-dioctylfluorene) and Super Yellow blend with Cs2CO3 modified cathode. Applied Materials Today 1, 45–51, https://doi.org/10.1016/j.apmt.2015.08.005 (2015).