A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation

Nature Communications - Tập 5 Số 1
Jiechao Ge1, Minhuan Lan1, Bingjiang Zhou2, Weimin Liu2, Liang Guo2, Hui Wang2, Qingyan Jia2, Guangle Niu2, Xing Huang2, Hangyue Zhou2, Xiang‐Min Meng2, Pengfei Wang2, Chun‐Sing Lee3, Wenjun Zhang3, Xiaodong Han4
11] Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry (TIPC), Chinese Academy of Sciences, Beijing 100190, China [2].
2Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry (TIPC), Chinese Academy of Sciences, Beijing 100190, China
3Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR 999077, China.
4Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ferlay, J. et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer 127, 2893–2917 (2010).

Dolmans, E. J. G. J., Fukumura, D. & Jain, P. K. Photodynamic therapy for cancer. Nat. Rev. Cancer 3, 380–387 (2003).

Castano, A. P., Mroz, P. & Hamblin, M. R. Photodynamic therapy and anti-tumor immunity. Nat. Rev. Cancer 6, 535–545 (2006).

Moore, C. M., Pendse, D. & Emberton, M. Photodynamic therapy for prostate cancer-a review of current status and future promise. Nat. Clin. Pract. Urol. 6, 18–30 (2009).

Lovell, J. F., Liu, T. W. B., Chen, J. & Zheng, G. Activatable photosensitizers for imaging and therapy. Chem. Rev. 110, 2839–2857 (2010).

Detty, M. R., Gibson, S. L. & Wagner, S. J. Current clinical and preclinical photosensitizers for use in photodynamic therapy. J. Med. Chem. 47, 3897–3915 (2004).

Huang, Z. A review of progress in clinical photodynamic therapy. Technol. Cancer Res. Treat. 4, 283–293 (2005).

Gao, X. H., Cui, Y. Y., Levenson, R. M., Chung, L. W. K. & Nie, S. M. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22, 969–976 (2004).

Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).

Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R. & Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Mathods 5, 763–775 (2008).

Ye, L. et al. A pilot study in non-human primates shows no adverse response to intravenous injection of quantum dots. Nat. Nanotech. 7, 453–458 (2012).

Bakalova, R., Ohba, H., Zhelev, Z., Ishikawa, M. & Baba, Y. Quantum dots as photosensitizers? Nat. Biotechnol. 22, 1360–1361 (2004).

Idris, N. M. et al. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat. Med. 18, 1580–1585 (2012).

Xiao, L., Gu, L., Howell, S. B. & Sailor, M. J. Porous silicon nanoparticle photosensitizers for singlet oxygen and their phototoxicity against cancer cells. ACS Nano 5, 3651–3659 (2011).

Samia, A. C. S., Chen, X. B. & Burda, C. Semiconductor quantum dots for photodynamic therapy. J. Am. Chem. Soc. 125, 15736–15737 (2003).

Tsay, J. M. et al. Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates. J. Am. Chem. Soc. 129, 6865–6871 (2007).

Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).

Geim, A. K. Graphene: status and prospects. Science 324, 1530–1534 (2009).

Novoselov, K. S. et al. A roadmap for graphene. Nature 490, 192–200 (2012).

Kostarelos, K., Bianco, A. & Prato, M. Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat. Nanotech. 4, 627–633 (2009).

Krishna, V., Stevens, N., Koopman, B. & Moudgil, B. Optical heating and rapid transformation of functionalized fullerenes. Nat. Nanotech. 5, 330–334 (2010).

Xu, X. Y. et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 126, 12736–12737 (2004).

Baker, S. N. & Baker, G. A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem. Int. Ed. 49, 6726–6744 (2010).

Li, H. T. et al. Carbon nanodots: synthesis, properties and applications. J. Mater. Chem. 22, 24230–24253 (2012).

Shen, J. H., Zhu, Y. H., Yang, X. L. & Li, C. Z. Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun. 48, 3686–3699 (2012).

Huang, P. et al. Light-triggered theranostics based on photosensitizer conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy. Adv. Mater. 24, 5104–5110 (2012).

Markovic, Z. M. et al. Graphene quantum dots as autophagy-inducing photodynamic agents. Biomaterials 33, 7084–7092 (2012).

Lan, M. H. et al. Copolythiophene-derived colorimetric and fluorometric sensor for visually supersensitive determination of lipopolysaccharide. J. Am. Chem. Soc. 134, 6685–6694 (2012).

Zhou, J. et al. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J. Am. Chem. Soc. 129, 744–745 (2007).

Dong, Y. Q. et al. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew. Chem. Int. Ed. 52, 7800–7804 (2013).

Liu, L. et al. Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology. J. Am. Chem. Soc. 133, 15221–15223 (2011).

López-Ríos, T., Sandré, É., Leclercq, S. & Sauvain, É. Polyacetylene in diamond films evidenced by surface enhanced Raman scattering. Phy. Rev. Lett. 76, 4935–4938 (1996).

Kanner, R. C. & Foote, C. S. Singlet oxygen production from singlet and triplet states of 9, l0-Dicyanoanthracene. J. Am. Chem. Soc. 114, 678–681 (1992).

Ye, R. Q. et al. Coal as an abundant source of graphene quantum dots. Nat. Commun. 4, 2943–2948 (2013).

Zhang, Z. P., Zhang, J., Chen, N. & Qu, L. T. Graphene quantum dots: an emerging material for energy-related applications and beyond. Energy Environ. Sci. 5, 8869–8890 (2012).

Li, L. L. et al. Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale 5, 4015–4039 (2013).

Xing, C. F. et al. Design guidelines for conjugated polymers with light-activated anticancer activity. Adv. Funct. Mater. 21, 4058–4067 (2011).

Gollnick, K. & Held, S. H. Hydroxyanthraquinones as sensitizers of singlet oxygen reactions: quantum yields of triplet formation and singlet oxygen generation in acetonitrile. J. Photochem. Photobiol. A Chem. 69, 155–165 (1992).

Vankayala, R., Sagadevan, A., Vijayaraghavan, P., Kuo, C. L. & Hwang, K. C. Metal nanoparticles sensitize the formation of singlet oxygen. Angew. Chem. Int. Ed. 50, 10640–10644 (2011).

Cao, L. et al. Carbon dots for multiphoton bioimaging. J. Am. Chem. Soc. 129, 11318–11319 (2007).

Liu, Q. L. et al. Structural effect and mechanism of C70-carboxyfullerenes as efficient sensitizers against cancer cells. Small 8, 2070–2077 (2012).

Lovrić, J., Cho, S. J. & Winnik, F. M. Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem. Biol. 12, 1227–1234 (2005).

Chu, M. Q. et al. Laser light triggered-activated carbon nanosystem for cancer therapy. Biomaterials 34, 1820–1832 (2013).

Schweitzer, C. & Schmidt, R. Physical mechanisms of generation and deactivation of singlet oxygen. Chem. Rev. 103, 1685–1757 (2003).