Local behavior of fractional p-minimizers
Tài liệu tham khảo
Bjorland, 2012, Non-local gradient dependent operators, Adv. Math., 230, 1859, 10.1016/j.aim.2012.03.032
Brasco
Chambolle, 2012, A Hölder infinity Laplacian, ESAIM Control Optim. Calc. Var., 18, 799, 10.1051/cocv/2011182
Caffarelli, 2007, An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., 32, 1245, 10.1080/03605300600987306
Da Lio, 2011, 3-commutators estimates and the regularity of 1/2-harmonic maps into spheres, Anal. PDE, 4, 149, 10.2140/apde.2011.4.149
De Giorgi, 1957, Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino, Cl. Sci. Fis. Mat. Nat., 3, 25
Di Castro, 2014, Nonlocal Harnack inequalities, J. Funct. Anal., 267, 1807, 10.1016/j.jfa.2014.05.023
Di Nezza, 2012, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136, 521, 10.1016/j.bulsci.2011.12.004
Franzina, 2014, Fractional p-eigenvalues, Riv. Mat. Univ. Parma, 5, 315
Kassmann, 2007
Kassmann
Kassmann, 2009, A priori estimates for integro-differential operators with measurable kernels, Calc. Var. Partial Differ. Equ., 34, 1, 10.1007/s00526-008-0173-6
Kassmann
Kuusi, 2015, Nonlocal equations with measure data, Commun. Math. Phys., 337, 1317, 10.1007/s00220-015-2356-2
Iannizzotto, 2015, Existence results for fractional p-Laplacian problems via Morse theory, Adv. Calc. Var.
Ishii, 2010, A class of integral equations and approximation of p-Laplace equations, Calc. Var. Partial Differ. Equ., 37, 485, 10.1007/s00526-009-0274-x
Lindgren
Lindgren, 2014, Fractional eigenvalues, Calc. Var. Partial Differ. Equ., 49, 795, 10.1007/s00526-013-0600-1
Malý, 1997
Mingione, 2003, Bounds for the singular set of solutions to non linear elliptic systems, Calc. Var. Partial Differ. Equ., 18, 373, 10.1007/s00526-003-0209-x
Mingione, 2007, The Calderón–Zygmund theory for elliptic problems with measure data, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), 6, 195
Mingione, 2011, Gradient potential estimates, J. Eur. Math. Soc., 13, 459
Moser, 1961, On Harnack's theorem for elliptic differential equations, Commun. Pure Appl. Math., 14, 577, 10.1002/cpa.3160140329
Nash, 1958, Continuity of solutions of parabolic and elliptic equations, Am. J. Math., 80, 931, 10.2307/2372841
Palatucci, 2014, Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces, Calc. Var. Partial Differ. Equ., 50, 799, 10.1007/s00526-013-0656-y
Palatucci, 2013, Local and global minimizers for a variational energy involving a fractional norm, Ann. Mat. Pura Appl. (4), 192, 673, 10.1007/s10231-011-0243-9
G. Palatucci, A. Pisante, Y. Sire, Subcritical approximation of a Yamabe type non local equation: a Gamma-convergence approach, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), http://dx.doi.org/10.2422/2036-2145.201302_006.
Savin, 2011, Density estimates for a nonlocal variational model via the Sobolev inequality, SIAM J. Math. Anal., 43, 2675, 10.1137/110831040
Savin, 2014, Density estimates for a variational model driven by the Gagliardo norm, J. Math. Pures Appl., 101, 1, 10.1016/j.matpur.2013.05.001
Servadei, 2014, Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat., 58, 133, 10.5565/PUBLMAT_58114_06
Silvestre, 2006, Hölder estimates for solutions of integro-differential equations like the fractional Laplace, Indiana Univ. Math. J., 55, 1155, 10.1512/iumj.2006.55.2706