The inhibition of protein translation promotes tumor angiogenic switch
Tóm tắt
The ‘angiogenic switch’ is critical for tumor progression. However, the pathological details and molecular mechanisms remain incompletely characterized. In this study, we established mammal xenografts in zebrafish to visually investigate the first vessel growth (angiogenic switch) in real-time, by inoculating tumor cells into the perivitelline space of live optically transparent Transgenic (flk1:EGFP) zebrafish larvae. Using this model, we found that hypoxia and hypoxia-inducible factor (HIF) signaling were unnecessary for the angiogenic switch, whereas vascular endothelial growth factor A gene (Vegfa) played a crucial role. Mechanistically, transcriptome analysis showed that the angiogenic switch was characterized by inhibition of translation, but not hypoxia. Phosphorylation of eukaryotic translation initiation factor 2 alpha (Eif2α) and the expression of Vegfa were increased in the angiogenic switch microtumors, and 3D tumor spheroids, and puromycin-treated tumor cells. Vegfa overexpression promoted early onset of the angiogenic switch, whereas Vegfa knockout prevented the first tumor vessel from sprouting. Pretreatment of tumor cells with puromycin promoted the angiogenic switch in vivo similarly to Vegfa overexpression, whereas Vegfa knockdown suppressed the increase. This study provides direc and dynamic in vivo evidences that inhibition of translation, but not hypoxia or HIF signaling promotes the angiogenic switch in tumor by increasing Vegfa transcription.
Tài liệu tham khảo
Ribatti D, Nico B, Crivellato E, Roccaro AM, Vacca A. The history of the angiogenic switch concept. Leukemia. 2007;21(1):44–52. https://doi.org/10.1038/sj.leu.2404402.
Baeriswyl V, Christofori G. The angiogenic switch in carcinogenesis. Semin Cancer Biol. 2009;19(5):329–37. https://doi.org/10.1016/j.semcancer.2009.05.003.
Folkman J, Watson K, Ingber D, Hanahan D. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature. 1989;339(6219):58–61. https://doi.org/10.1038/339058a0.
Risau W, Flamme I. Vasculogenesis. Annu Rev Cell Dev Biol. 1995;11:73–91. https://doi.org/10.1146/annurev.cb.11.110195.000445.
Ramjiawan RR, Griffioen AW, Duda DG. Anti-angiogenesis for cancer revisited: Is there a role for combinations with immunotherapy? Angiogenesis. 2017;20(2):185–204. https://doi.org/10.1007/s10456-017-9552-y.
Shigeta K, Datta M, Hato T, Kitahara S, Chen IX, Matsui A, et al. Dual programmed death receptor-1 and vascular endothelial growth factor receptor-2 blockade promotes vascular normalization and enhances antitumor immune responses in hepatocellular carcinoma. Hepatology. 2020;71(4):1247–61. https://doi.org/10.1002/hep.30889.
Chen JL, Pan CK, Huang YS, Tsai CY, Wang CW, Lin YL, et al. Evaluation of antitumor immunity by a combination treatment of high-dose irradiation, anti-PDL1, and anti-angiogenic therapy in murine lung tumors. Cancer Immunol Immunother. 2020. https://doi.org/10.1007/s00262-020-02690-w.
Wallin JJ, Bendell JC, Funke R, Sznol M, Korski K, Jones S, et al. Atezolizumab in combination with bevacizumab enhances antigen-specific T-cell migration in metastatic renal cell carcinoma. Nat Commun. 2016;7:12624. https://doi.org/10.1038/ncomms12624.
Hashimoto T, Shibasaki F. Hypoxia-inducible factor as an angiogenic master switch. Front Pediatr. 2015;3:33. https://doi.org/10.3389/fped.2015.00033.
Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med. 2003;9(6):677–84. https://doi.org/10.1038/nm0603-677.
Wang JC, Li GY, Li PP, Sun X, Li WM, Li Y, et al. Suppression of hypoxia-induced excessive angiogenesis by metformin via elevating tumor blood perfusion. Oncotarget. 2017;8(43):73892–904. https://doi.org/10.18632/oncotarget.18029.
Dulloo I, Phang BH, Othman R, Tan SY, Vijayaraghavan A, Goh LK, et al. Hypoxia-inducible TAp73 supports tumorigenesis by regulating the angiogenic transcriptome. Nat Cell Biol. 2015;17(4):511–23. https://doi.org/10.1038/ncb3130.
Zimna A, Kurpisz M. Hypoxia-inducible factor-1 in physiological and pathophysiological angiogenesis: applications and therapies. Biomed Res Int. 2015;2015:549412. https://doi.org/10.1155/2015/549412.
Chung AS, Lee J, Ferrara N. Targeting the tumour vasculature: insights from physiological angiogenesis. Nat Rev Cancer. 2010;10(7):505–14. https://doi.org/10.1038/nrc2868.
Ben-Yosef Y, Miller A, Shapiro S, Lahat N. Hypoxia of endothelial cells leads to MMP-2-dependent survival and death. Am J Physiol Cell Physiol. 2005;289(5):C1321–1331. https://doi.org/10.1152/ajpcell.00079.2005.
Keely S, Glover LE, MacManus CF, Campbell EL, Scully MM, Furuta GT, et al. Selective induction of integrin beta1 by hypoxia-inducible factor: implications for wound healing. FASEB J. 2009;23(5):1338–46. https://doi.org/10.1096/fj.08-125344.
Ferrara N. Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am J Physiol Cell Physiol. 2001;280(6):C1358-1366. https://doi.org/10.1152/ajpcell.2001.280.6.C1358.
Ferrara N. VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer. 2002;2(10):795–803. https://doi.org/10.1038/nrc909.
Dvorak HF. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol. 2002;20(21):4368–80. https://doi.org/10.1200/JCO.2002.10.088.
Norrby K. In vivo models of angiogenesis. J Cell Mol Med. 2006;10(3):588–612. https://doi.org/10.1111/j.1582-4934.2006.tb00423.x.
Hasan J, Shnyder SD, Bibby M, Double JA, Bicknel R, Jayson GC. Quantitative angiogenesis assays in vivo–a review. Angiogenesis. 2004;7(1):1–16. https://doi.org/10.1023/B:AGEN.0000037338.51851.d1.
Nicoli S, Presta M. The zebrafish/tumor xenograft angiogenesis assay. Nat Protoc. 2007;2(11):2918–23. https://doi.org/10.1038/nprot.2007.412.
Lawson ND, Weinstein BM. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol. 2002;248(2):307–18. https://doi.org/10.1006/dbio.2002.0711.
Vitale G, Gaudenzi G, Dicitore A, Cotelli F, Ferone D, Persani L. Zebrafish as an innovative model for neuroendocrine tumors. Endocr Relat Cancer. 2014;21(1):R67-83. https://doi.org/10.1530/ERC-13-0388.
van der Ent W, Jochemsen AG, Teunisse AF, Krens SF, Szuhai K, Spaink HP, et al. Ewing sarcoma inhibition by disruption of EWSR1-FLI1 transcriptional activity and reactivation of p53. J Pathol. 2014;233(4):415–24. https://doi.org/10.1002/path.4378.
Zhao C, Wang X, Zhao Y, Li Z, Lin S, Wei Y, et al. A novel xenograft model in zebrafish for high-resolution investigating dynamics of neovascularization in tumors. PLoS ONE. 2011;6(7):e21768. https://doi.org/10.1371/journal.pone.0021768.
Schito L. Hypoxia-dependent angiogenesis and lymphangiogenesis in cancer. In: Gilkes DM, editor. Hypoxia and cancer metastasis, vol. 1136. Cham: Springer International Publishing Ag; 2019. p. 71–85.
Rohan SM, Xiao Y, Liang Y, Dudas ME, Al-Ahmadie HA, Fine SW, et al. Clear-cell papillary renal cell carcinoma: molecular and immunohistochemical analysis with emphasis on the von Hippel-Lindau gene and hypoxia-inducible factor pathway-related proteins. Mod Pathol. 2011;24(9):1207–20. https://doi.org/10.1038/modpathol.2011.80.
Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol. 1996;16(9):4604–13. https://doi.org/10.1128/mcb.16.9.4604.
Pang YL, Poruri K, Martinis SA. tRNA synthetase: tRNA aminoacylation and beyond. Wiley Interdiscip Rev RNA. 2014;5(4):461–80. https://doi.org/10.1002/wrna.1224.
Naik HM, Majewska NI, Betenbaugh MJ. Impact of nucleotide sugar metabolism on protein N-glycosylation in Chinese Hamster Ovary (CHO) cell culture. Curr Opin Chem Eng. 2018;22:167–76. https://doi.org/10.1016/j.coche.2018.10.002.
Wek RC, Jiang HY, Anthony TG. Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans. 2006;34:7–11. https://doi.org/10.1042/bst0340007.
Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell. 2000;6(5):1099–108. https://doi.org/10.1016/s1097-2765(00)00108-8.
Longchamp A, Mirabella T, Arduini A, MacArthur MR, Das A, Trevino-Villarreal JH, et al. Amino acid restriction triggers angiogenesis via GCN2/ATF4 regulation of VEGF and H2S production. Cell. 2018;173(1):117–129 e114. https://doi.org/10.1016/j.cell.2018.03.001.
Lee SL, Rouhi P, Dahl Jensen L, Zhang D, Ji H, Hauptmann G, et al. Hypoxia-induced pathological angiogenesis mediates tumor cell dissemination, invasion, and metastasis in a zebrafish tumor model. Proc Natl Acad Sci U S A. 2009;106(46):19485–90. https://doi.org/10.1073/pnas.0909228106.
Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev. 1998;12(2):149–62. https://doi.org/10.1101/gad.12.2.149.
Compernolle V, Brusselmans K, Acker T, Hoet P, Tjwa M, Beck H, et al. Loss of HIF-2alpha and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice. Nat Med. 2002;8(7):702–10. https://doi.org/10.1038/nm721.
Ramirez-Bergeron DL, Runge A, Adelman DM, Gohil M, Simon MC. HIF-dependent hematopoietic factors regulate the development of the embryonic vasculature. Dev Cell. 2006;11(1):81–92. https://doi.org/10.1016/j.devcel.2006.04.018.
Ghosh R, Lipson KL, Sargent KE, Mercurio AM, Hunt JS, Ron D, et al. Transcriptional regulation of VEGF-A by the unfolded protein response pathway. PLoS ONE. 2010;5(3):e9575. https://doi.org/10.1371/journal.pone.0009575.
Arany Z, Foo SY, Ma Y, Ruas JL, Bommi-Reddy A, Girnun G, et al. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature. 2008;451(7181):1008–12. https://doi.org/10.1038/nature06613.
Rollins JA, Shaffer D, Snow SS, Kapahi P, Rogers AN. Dietary restriction induces posttranscriptional regulation of longevity genes. Life Sci Alliance. 2019;2(4). https://doi.org/10.26508/lsa.201800281.
Castranova D, Davis AE, Lo BD, Miller MF, Paukstelis PJ, Swift MR, et al. Aminoacyl-transfer RNA synthetase deficiency promotes angiogenesis via the unfolded protein response pathway. Arterioscler Thromb Vasc Biol. 2016;36(4):655–62. https://doi.org/10.1161/ATVBAHA.115.307087.
Jennings MD, Kershaw CJ, Adomavicius T, Pavitt GD. Fail-safe control of translation initiation by dissociation of eIF2 alpha phosphorylated ternary complexes. Elife. 2017;6:e24542. https://doi.org/10.7554/eLife.24542.
Adomavicius T, Guaita M, Zhou Y, Jennings MD, Latif Z, Roseman AM, et al. The structural basis of translational control by eIF2 phosphorylation. Nat Commun. 2019;10:10. https://doi.org/10.1038/s41467-019-10167-3.
Kenner LR, Anand AA, Nguyen HC, Myasnikov AG, Klose CJ, McGeever LA, et al. eIF2B-catalyzed nucleotide exchange and phosphoregulation by the integrated stress response. Science. 2019;364(6439):491–+. https://doi.org/10.1126/science.aaw2922.
Pakos-Zebrucka K, Koryga I, Mnich K, Ljujic M, Samali A, Gorman AM. The integrated stress response. EMBO Rep. 2016;17(10):1374–95. https://doi.org/10.15252/embr.201642195
Fujimoto A, Kawana K, Taguchi A, Adachi K, Sato M, Nakamura H, et al. Inhibition of endoplasmic reticulum (ER) stress sensors sensitizes cancer stem-like cells to ER stress-mediated apoptosis. Oncotarget. 2016;7(32):51854–64. https://doi.org/10.18632/oncotarget.10126.
Zhao C, Gomez GA, Zhao Y, Yang Y, Cao D, Lu J, et al. ETV2 mediates endothelial transdifferentiation of glioblastoma. Signal Transduct Target Ther. 2018;3:4. https://doi.org/10.1038/s41392-018-0007-8.
Zhao C, Zhang W, Zhao Y, Yang Y, Luo H, Ji G, et al. Endothelial cords promote tumor initial growth prior to vascular function through a paracrine mechanism. Sci Rep. 2016;6:19404. https://doi.org/10.1038/srep19404.
Holmgaard A, Askou AL, Benckendorff JNE, Thomsen EA, Cai Y, Bek T, et al. In vivo knockout of the Vegfa gene by lentiviral delivery of CRISPR/Cas9 in mouse retinal pigment epithelium cells. Mol Ther Nucleic Acids. 2017;9:89–99. https://doi.org/10.1016/j.omtn.2017.08.016.
Yu C, Yao X, Zhao L, Wang P, Zhang Q, Zhao C, et al. Wolf-hirschhorn syndrome candidate 1 (whsc1) functions as a tumor suppressor by governing cell differentiation. Neoplasia. 2017;19(8):606–16. https://doi.org/10.1016/j.neo.2017.05.001.