Some results on a modified Mann iterative scheme in a reflexive Banach space

Springer Science and Business Media LLC - Tập 2013 - Trang 1-14 - 2013
Yan Hao1
1School of Mathematics, Physics and Information Science, Zhejiang Ocean University, Zhoushan, China

Tóm tắt

The purpose of this paper is to study Mann iterative schemes. Strong convergence of a modified Mann iterative scheme is obtained in a reflexive Banach space.

Tài liệu tham khảo

Mann WR: Mean value methods in iteration. Proc. Am. Math. Soc. 1953, 4: 506–510. 10.1090/S0002-9939-1953-0054846-3 Genel A, Lindenstrass J: An example concerning fixed points. Isr. J. Math. 1975, 22: 81–86. 10.1007/BF02757276 Reich S: Weak convergence theorems for nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 1979, 67: 274–276. 10.1016/0022-247X(79)90024-6 Bauschke HH, Matouskova E, Reich S: Projection and proximal point methods: convergence results and counterexamples. Nonlinear Anal. 2004, 56: 715–738. 10.1016/j.na.2003.10.010 Khan MA, Yannelis NC: Equilibrium Theory in Infinite Dimensional Spaces. Springer, New York; 1991. Combettes PL: The convex feasibility problem in image recovery. 95. In Advances in Imaging and Electron Physics. Edited by: Hawkes P. Academic Press, New York; 1996:155–270. Goebel K, Kirk WA: A fixed point theorem for asymptotically nonexpansive mappings. Proc. Am. Math. Soc. 1972, 35: 171–174. 10.1090/S0002-9939-1972-0298500-3 Bruck RE, Kuczumow T, Reich S: Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property. Colloq. Math. 1993, 65: 169–179. Kirk WA: Fixed point theorems for non-Lipschitzian mappings of asymptotically nonexpansive type. Isr. J. Math. 1974, 17: 339–346. 10.1007/BF02757136 Nakajo K, Takahashi W: Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups. J. Math. Anal. Appl. 2003, 279: 372–379. 10.1016/S0022-247X(02)00458-4 Cioranescu I: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems. Kluwer Academic, Dordrecht; 1990. Alber YI: Metric and generalized projection operators in Banach spaces: properties and applications. In Theory and Applications of Nonlinear Operators of Accretive and Monotone Type. Edited by: Kartsatos AG. Dekker, New York; 1996. Alber YI, Reich S: An iterative method for solving a class of nonlinear operator equations in Banach spaces. Panam. Math. J. 1994, 4: 39–54. Reich S: A weak convergence theorem for the alternating method with Bregman distance. In Theory and Applications of Nonlinear Operators of Accretive and Monotone Type. Edited by: Kartsatos AG. Dekker, New York; 1996. Butnariu D, Reich S, Zaslavski AJ: Weak convergence of orbits of nonlinear operators in reflexive Banach spaces. Numer. Funct. Anal. Optim. 2003, 24: 489–508. 10.1081/NFA-120023869 Censor Y, Reich S: Iterations of paracontractions and firmly nonexpansive operators with applications to feasibility and optimization. Optimization 1996, 37: 323–339. 10.1080/02331939608844225 Agarwal RP, Cho YJ, Qin X: Generalized projection algorithms for nonlinear operators. Numer. Funct. Anal. Optim. 2007, 28: 1197–1215. 10.1080/01630560701766627 Qin X, Su Y, Wu C, Liu K: Strong convergence theorems for nonlinear operators in Banach spaces. Commun. Appl. Nonlinear Anal. 2007, 14: 35–50. Qin X, Cho YJ, Kang SM: Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces. J. Comput. Appl. Math. 2009, 225: 20–30. 10.1016/j.cam.2008.06.011 Zhou H, Gao G, Tan B: Convergence theorems of a modified hybrid algorithm for a family of quasi- ϕ -asymptotically nonexpansive mappings. J. Appl. Math. Comput. 2010, 32: 453–464. 10.1007/s12190-009-0263-4 Qin X, Cho SY, Kang SM: On hybrid projection methods for asymptotically quasi- ϕ -nonexpansive mappings. Appl. Math. Comput. 2010, 215: 3874–3883. 10.1016/j.amc.2009.11.031 Qin X, Agarwal RP: Shrinking projection methods for a pair of asymptotically quasi- ϕ -nonexpansive mappings. Numer. Funct. Anal. Optim. 2010, 31: 1072–1089. 10.1080/01630563.2010.501643 Qin X, Wang L: On asymptotically quasi- ϕ -nonexpansive mappings in the intermediate sense. Abstr. Appl. Anal. 2012., 2012: Article ID 636217 Matsushita SY, Takahashi W: A strong convergence theorem for relatively nonexpansive mappings in a Banach space. J. Approx. Theory 2005, 134: 257–266. 10.1016/j.jat.2005.02.007 Su Y, Qin X: Monotone CQ iteration processes for nonexpansive semigroups and maximal monotone operators. Nonlinear Anal. 2008, 68: 3657–3664. 10.1016/j.na.2007.04.008 Takahashi W, Takeuchi Y, Kubota R: Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. 2008, 341: 276–286. 10.1016/j.jmaa.2007.09.062 Cho SY, Kang SM: Approximation of fixed points of pseudocontraction semigroups based on a viscosity iterative process. Appl. Math. Lett. 2011, 24: 224–228. 10.1016/j.aml.2010.09.008 Cho SY: Hybrid projection algorithms for treating common fixed points of a family of demicontinuous pseudocontractions. Appl. Math. Lett. 2012, 25: 854–857. 10.1016/j.aml.2011.10.031 Kang SM, Cho SY, Liu Z: Convergence of iterative sequences for generalized equilibrium problems involving inverse-strongly monotone mappings. J. Inequal. Appl. 2010., 2010: Article ID 827082 Ye J, Huang J: Strong convergence theorems for fixed point problems and generalized equilibrium problems of three relatively quasi-nonexpansive mappings in Banach spaces. J. Math. Comput. Sci. 2011, 1: 1–18. Cho SY, Kang SM: Approximation of common solutions of variational inequalities via strict pseudocontractions. Acta Math. Sci. 2012, 32: 1607–1618. Kim JK: Strong convergence theorems by hybrid projection methods for equilibrium problems and fixed point problems of the asymptotically quasi- ϕ -nonexpansive mappings. Fixed Point Theory Appl. 2011., 2011: Article ID 10 Qin X, Cho SY, Kang SM: Strong convergence of shrinking projection methods for quasi- ϕ -nonexpansive mappings and equilibrium problems. J. Comput. Appl. Math. 2010, 234: 750–760. 10.1016/j.cam.2010.01.015 Zegeye H, Shahzad N: Strong convergence theorem for a common point of solution of variational inequality and fixed point problem. Adv. Fixed Point Theory 2012, 2: 374–397. Qin X, Cho SY, Kang SM: Iterative algorithms for variational inequality and equilibrium problems with applications. J. Glob. Optim. 2010, 48: 423–445. 10.1007/s10898-009-9498-8 Chen Z: A strong convergence theorem of common elements in Hilbert spaces. Fixed Point Theory Appl. 2013., 2013: Article ID 59 Hao Y, Cho SY: Fixed point iterations of a pair of hemirelatively nonexpansive mappings. Fixed Point Theory Appl. 2010., 2010: Article ID 270150 Su Y, Qin X: Strong convergence theorems for asymptotically nonexpansive mappings and asymptotically nonexpansive semigroups. Fixed Point Theory Appl. 2006., 2006: Article ID 96215