L p -Boundedness of Marcinkiewicz Integrals with Hardy Space Function Kernels

Yong Ding1, Dashan Fan2, Yibiao Pan3
1Department of Mathematics, Beijing Normal University, Beijing 100875, P. R. China
2Department of Mathematics, Anhui University and University of Wisconsin-Milwaukee, Wisconsin MW 53201, USA
3Department of Mathematics, University of Pittsburgh, Pittsburgh, USA

Tóm tắt

We give the L p -boundedness for a class of Marcinkiewicz integral operators $$ \mu _{\Omega } ,\mu ^{ * }_{{\Omega ,\lambda }} $$ and μΩ,s related to the Littlewood-Paley g-function, $$ g^{ * }_{\lambda } $$ -function and the area integral S, respectively. These operators have the kernel functions Ω∈H 1 (S n−1), the Hardy space on S n−1. These results in this paper substantially improve and extend the known results.

Từ khóa


Tài liệu tham khảo

E M Stein. On the function of Littlewood–Paley, Lusin and Marcinkiewicz. Trans Amer Math Soc, 1958, 88: 430–466

A Benedek, A Calderón, R Panzone. Convolution operators on Banach space valued functions. Proc Nat Acad Sci, USA, 1962, 48: 356–365

A Torchinsky, S Wang. A note on the Marcinkiewicz integral. Coll Math, 1990, 61–62: 235–243

L Colzani. Hardy spaces on sphere. PhD Thesis, Washington University, St Louis, 1982

L Colzani, M Taibleson, G Weiss. Maximal estimates for Cesàro and Riesz means on sphere. Indiana Univ Math J, 1984, 33: 873–889

D Fan, Y Pan. A singular integral operator with rough kernel. Proc Amer Math Soc, 1997, 125: 3695–3703

R Fefferman. Multiparameter Fourier analysis. Beijing Lectures in Harmonic Analysis, 47–130, Edited by E M Stein, Annals of Math Study 112, 1986, Princeton Univ Press

A Calderón, A Zygmund. A note on the interpolation of sublinear operators. Amer J Math, 1956, 78: 282–288