Multi-contrast atherosclerosis characterization (MATCH) of carotid plaque with a single 5-min scan: technical development and clinical feasibility

Journal of Cardiovascular Magnetic Resonance - Tập 16 - Trang 1-12 - 2014
Zhaoyang Fan1, Wei Yu2, Yibin Xie1,3, Li Dong2, Lixin Yang2, Zhanhong Wang2, Antonio Hernandez Conte4, Xiaoming Bi5, Jing An6, Tianjing Zhang6, Gerhard Laub5, Prediman Krishan Shah7,8, Zhaoqi Zhang2, Debiao Li1,3
1Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, USA
2Department of Radiology, Anzhen Hospital, Capital Medical University, Beijing, China
3Department of Bioengineering, University of California, Los Angeles, USA
4Department of Anesthesiology, Cedars-Sinai Medical Center, Los Angeles, USA
5MR R&D, Siemens Healthcare, Los Angeles, USA
6MR Collaborations NE Asia, Siemens Healthcare, Beijing, China
7Oppenheimer Atherosclerosis Research Center, Cedars-Sinai Medical Center, Los Angeles, USA
8Atherosclerosis Prevention and Management Center, Cedars-Sinai Medical Center, Los Angeles, USA

Tóm tắt

Multi-contrast weighted imaging is a commonly used cardiovascular magnetic resonance (CMR) protocol for characterization of carotid plaque composition. However, this approach is limited in several aspects including low slice resolution, long scan time, image mis-registration, and complex image interpretation. In this work, a 3D CMR technique, named Multi-contrast Atherosclerosis Characterization (MATCH), was developed to mitigate the above limitations. MATCH employs a 3D spoiled segmented fast low angle shot readout to acquire data with three different contrast weightings in an interleaved fashion. The inherently co-registered image sets, hyper T1-weighting, gray blood, and T2-weighting, are used to detect intra-plaque hemorrhage (IPH), calcification (CA), lipid-rich necrotic core (LRNC), and loose-matrix (LM). The MATCH sequence was optimized by computer simulations and testing on four healthy volunteers and then evaluated in a pilot study of six patients with carotid plaque, using the conventional multi-contrast protocol as a reference. On MATCH images, the major plaque components were easy to identify. Spatial co-registration between the three image sets with MATCH was particularly helpful for the reviewer to discern co-existent components in an image and appreciate their spatial relation. Based on Cohen’s kappa tests, moderate to excellent agreement in the image-based or artery-based component detection between the two protocols was obtained for LRNC, IPH, CA, and LM, respectively. Compared with the conventional multi-contrast protocol, the MATCH protocol yield significantly higher signal contrast ratio for IPH (3.1 ± 1.3 vs. 0.4 ± 0.3, p < 0.001) and CA (1.6 ± 1.5 vs. 0.7 ± 0.6, p = 0.012) with respect to the vessel wall. To the best of our knowledge, the proposed MATCH sequence is the first 3D CMR technique that acquires spatially co-registered multi-contrast image sets in a single scan for characterization of carotid plaque composition. Our pilot clinical study suggests that the MATCH-based protocol may outperform the conventional multi-contrast protocol in several respects. With further technical improvements and large-scale clinical validation, MATCH has the potential to become a CMR method for assessing the risk of plaque disruption in a clinical workup.

Tài liệu tham khảo

Barnett HJ, Gunton RW, Eliasziw M, Fleming L, Sharpe B, Gates P, Meldrum H: Causes and severity of ischemic stroke in patients with internal carotid artery stenosis. JAMA. 2000, 283: 1429-1436. 10.1001/jama.283.11.1429. Golledge J, Greenhalgh RM, Davies AH: The symptomatic carotid plaque. Stroke. 2000, 31: 774-781. 10.1161/01.STR.31.3.774. Inzitari D, Eliasziw M, Gates P, Sharpe BL, Chan RK, Meldrum HE, Barnett HJ: The causes and risk of stroke in patients with asymptomatic internal-carotid-artery stenosis: North American Symptomatic Carotid Endarterectomy Trial Collaborators. N Engl J Med. 2000, 342: 1693-1700. 10.1056/NEJM200006083422302. Imparato AM, Riles TS, Gorstein F: The carotid bifurcation plaque: pathologic findings associated with cerebral ischemia. Stroke. 1979, 10: 238-245. 10.1161/01.STR.10.3.238. Lusby RJ, Ferrell LD, Ehrenfeld WK, Stoney RJ, Wylie EJ: Carotid plaque hemorrhage: its role in production of cerebral ischemia. Arch Surg. 1982, 117: 1479-1488. 10.1001/archsurg.1982.01380350069010. Virmani R, Burke AP, Farb A, Kolodgie FD: Pathology of the vulnerable plaque. J Am Coll Cardiol. 2006, 47: C13-C18. 10.1016/j.jacc.2005.10.065. Fayad ZA, Fuster V: Characterization of atherosclerotic plaques by magnetic resonance imaging. Ann N Y Acad Sci. 2000, 902: 173-186. 10.1111/j.1749-6632.2000.tb06312.x. Yuan C, Mitsumori LM, Beach KW, Maravilla KR: Carotid atherosclerotic plaque: noninvasive MR characterization and identification of vulnerable lesions. Radiology. 2001, 221: 285-299. 10.1148/radiol.2212001612. Cai JM, Hatsukami TS, Ferguson MS, Small R, Polissar NL, Yuan C: Classification of human carotid atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging. Circulation. 2002, 106: 1368-1373. 10.1161/01.CIR.0000028591.44554.F9. Clarke SE, Hammond RR, Mitchell JR, Rutt BK: Quantitative assessment of carotid plaque composition using multicontrast MRI and registered histology. Magn Reson Med. 2003, 50: 1199-1208. 10.1002/mrm.10618. Saam T, Ferguson MS, Yarnykh VL, Takaya N, Xu D, Polissar NL, Hatsukami TS, Yuan C: Quantitative evaluation of carotid plaque composition by in vivo MRI. Arterioscler Thromb Vasc Biol. 2005, 25: 234-239. Yuan C, Mitsumori LM, Ferguson MS, Polissar NL, Echelard D, Ortiz G, Small R, Davies JW, Kerwin WS, Hatsukami TS: In vivo accuracy of multispectral magnetic resonance imaging for identifying lipid-rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques. Circulation. 2001, 104: 2051-2056. 10.1161/hc4201.097839. Mitsumori LM, Hatsukami TS, Ferguson MS, Kerwin WS, Cai J, Yuan C: In vivo accuracy of multisequence MR imaging for identifying unstable fibrous caps in advanced human carotid plaques. J Magn Reson Imaging. 2003, 17: 410-420. 10.1002/jmri.10264. Takaya N, Yuan C, Chu B, Saam T, Underhill H, Cai J, Tran N, Polissar NL, Isaac C, Ferguson MS, Garden GA, Cramer SC, Maravilla KR, Hashimoto B, Hatsukami TS: Association between carotid plaque characteristics and subsequent ischemic cerebrovascular events: a prospective assessment with MRI–initial results. Stroke. 2006, 37: 818-823. 10.1161/01.STR.0000204638.91099.91. den Hartog AG, Bovens SM, Koning W, Hendrikse J, Luijten PR, Moll FL, Pasterkamp G, de Borst GJ: Current status of clinical magnetic resonance imaging for plaque characterisation in patients with carotid artery stenosis. Eur J Vasc Endovasc Surg. 2013, 45: 7-21. 10.1016/j.ejvs.2012.10.022. Antiga L, Wasserman BA, Steinman DA: On the overestimation of early wall thickening at the carotid bulb by black blood MRI, with implications for coronary and vulnerable plaque imaging. Magn Reson Med. 2008, 60: 1020-1028. 10.1002/mrm.21758. Balu N, Kerwin WS, Chu B, Liu F, Yuan C: Serial MRI of carotid plaque burden: influence of subject repositioning on measurement precision. Magn Reson Med. 2007, 57: 592-599. 10.1002/mrm.21160. Luk-Pat GT, Gold GE, Olcott EW, Hu BS, Nishimura DG: High-resolution three-dimensional in vivo imaging of atherosclerotic plaque. Magn Reson Med. 1999, 42: 762-771. 10.1002/(SICI)1522-2594(199910)42:4<762::AID-MRM19>3.0.CO;2-M. Crowe LA, Gatehouse P, Yang GZ, Mohiaddin RH, Varghese A, Charrier C, Keegan J, Firmin DN: Volume-selective 3D turbo spin echo imaging for vascular wall imaging and distensibility measurement. J Magn Reson Imaging. 2003, 17: 572-580. 10.1002/jmri.10294. Bornstedt A, Bernhardt P, Hombach V, Kamenz J, Spiess J, Subgang A, Rasche V: Local excitation black blood imaging at 3T: application to the carotid artery wall. Magn Reson Med. 2008, 59: 1207-1211. 10.1002/mrm.21590. Balu N, Yarnykh VL, Chu B, Wang J, Hatsukami T, Yuan C: Carotid plaque assessment using fast 3D isotropic resolution black-blood MRI. Magn Reson Med. 2011, 65: 627-637. 10.1002/mrm.22642. Fan Z, Zhang Z, Chung YC, Weale P, Zuehlsdorff S, Carr J, Li D: Carotid arterial wall MRI at 3T using 3D variable-flip-angle turbo spin-echo (TSE) with flow-sensitive dephasing (FSD). J Magn Reson Imaging. 2010, 31: 645-654. 10.1002/jmri.22058. Koktzoglou I, Li D: Submillimeter isotropic resolution carotid wall MRI with swallowing compensation: imaging results and semiautomated wall morphometry. J Magn Reson Imaging. 2007, 25: 815-823. 10.1002/jmri.20849. Moody AR, Murphy RE, Morgan PS, Martel AL, Delay GS, Allder S, MacSweeney ST, Tennant WG, Gladman J, Lowe J, Hunt BJ: Characterization of complicated carotid plaque with magnetic resonance direct thrombus imaging in patients with cerebral ischemia. Circulation. 2003, 107: 3047-3052. 10.1161/01.CIR.0000074222.61572.44. Wang J, Bornert P, Zhao H, Hippe DS, Zhao X, Balu N, Ferguson MS, Hatsukami TS, Xu J, Yuan C, Kerwin WS: Simultaneous noncontrast angiography and intraplaque hemorrhage (SNAP) imaging for carotid atherosclerotic disease evaluation. Magn Reson Med. 2013, 69: 337-345. 10.1002/mrm.24254. Zhu DC, Vu AT, Ota H, DeMarco JK: An optimized 3D spoiled gradient recalled echo pulse sequence for hemorrhage assessment using inversion recovery and multiple echoes (3D SHINE) for carotid plaque imaging. Magn Reson Med. 2010, 64: 1341-1351. 10.1002/mrm.22517. Cappendijk VC, Heeneman S, Kessels AG, Cleutjens KB, Schurink GW, Welten RJ, Mess WH, van Suylen RJ, Leiner T, Daemen MJ, van Engelshoven JM, Kooi ME: Comparison of single-sequence T1w TFE MRI with multisequence MRI for the quantification of lipid-rich necrotic core in atherosclerotic plaque. J Magn Reson Imaging. 2008, 27: 1347-1355. 10.1002/jmri.21360. Koktzoglou I: Gray blood magnetic resonance for carotid wall imaging and visualization of deep-seated and superficial vascular calcifications. Magn Reson Med. 2013, 70: 75-85. 10.1002/mrm.24445. Ota H, Yarnykh VL, Ferguson MS, Underhill HR, Demarco JK, Zhu DC, Oikawa M, Dong L, Zhao X, Collar A, Hatsukami TS, Yuan C: Carotid intraplaque hemorrhage imaging at 3.0-T MR imaging: comparison of the diagnostic performance of three T1-weighted sequences. Radiology. 2010, 254: 551-563. 10.1148/radiol.09090535. Zhu DC, Ferguson MS, DeMarco JK: An optimized 3D inversion recovery prepared fast spoiled gradient recalled sequence for carotid plaque hemorrhage imaging at 3.0 T. Magn Reson Imaging. 2008, 26: 1360-1366. 10.1016/j.mri.2008.05.002. Fan Z, Sheehan J, Bi X, Liu X, Carr J, Li D: 3D noncontrast MR angiography of the distal lower extremities using flow-sensitive dephasing (FSD)-prepared balanced SSFP. Magn Reson Med. 2009, 62: 1523-1532. 10.1002/mrm.22142. Wang J, Yarnykh VL, Hatsukami T, Chu B, Balu N, Yuan C: Improved suppression of plaque-mimicking artifacts in black-blood carotid atherosclerosis imaging using a multislice motion-sensitized driven-equilibrium (MSDE) turbo spin-echo (TSE) sequence. Magn Reson Med. 2007, 58: 973-981. 10.1002/mrm.21385. Koktzoglou I, Li D: Diffusion-prepared segmented steady-state free precession: Application to 3D black-blood cardiovascular magnetic resonance of the thoracic aorta and carotid artery walls. J Cardiovasc Magn Reson. 2007, 9: 33-42. 10.1080/10976640600843413. Levitt M, Freeman R, Frenkel T: Broadband heteronuclear decoupling. J Magn Reson. 1982, 47: 328-330. Noeske R, Seifert F, Rhein KH, Rinneberg H: Human cardiac imaging at 3 T using phased array coils. Magn Reson Med. 2000, 44: 978-982. 10.1002/1522-2594(200012)44:6<978::AID-MRM22>3.0.CO;2-9. Kerwin WS: Carotid artery disease and stroke: assessing risk with vessel wall MRI. ISRN Cardiol. 2012, 2012: 180710-10.5402/2012/180710. Chu B, Kampschulte A, Ferguson MS, Kerwin WS, Yarnykh VL, O’Brien KD, Polissar NL, Hatsukami TS, Yuan C: Hemorrhage in the atherosclerotic carotid plaque: a high-resolution MRI study. Stroke. 2004, 35: 1079-1084. 10.1161/01.STR.0000125856.25309.86. Landis JR, Koch GG: The measurement of observer agreement for categorical data. Biometrics. 1977, 33: 159-174. 10.2307/2529310. Wang J, Ferguson MS, Balu N, Yuan C, Hatsukami TS, Bornert P: Improved carotid intraplaque hemorrhage imaging using a slab-selective phase-sensitive inversion-recovery (SPI) sequence. Magn Reson Med. 2010, 64: 1332-1340. 10.1002/mrm.22539. Boussel L, Arora S, Rapp J, Rutt B, Huston J, Parker D, Yuan C, Bassiouny H, Saloner D, Investigators M: Atherosclerotic plaque progression in carotid arteries: monitoring with high-spatial-resolution MR imaging–multicenter trial. Radiology. 2009, 252: 789-796. 10.1148/radiol.2523081798. Fan Z, Zuehlsdorff S, Liu X, Li D: Prospective self-gating for swallowing motion: a feasibility study in carotid artery wall MRI using three-dimensional variable-flip-angle turbo spin-echo. Magn Reson Med. 2012, 67: 490-498. 10.1002/mrm.23295. Gupta A, Baradaran H, Schweitzer AD, Kamel H, Pandya A, Delgado D, Dunning A, Mushlin AI, Sanelli PC: Carotid plaque MRI and stroke risk: a systematic review and meta-analysis. Stroke. 2013, 44: 3071-3077. 10.1161/STROKEAHA.113.002551. Touze E, Toussaint JF, Coste J, Schmitt E, Bonneville F, Vandermarcq P, Gauvrit JY, Douvrin F, Meder JF, Mas JL, Oppenheim C: Reproducibility of high-resolution MRI for the identification and the quantification of carotid atherosclerotic plaque components: consequences for prognosis studies and therapeutic trials. Stroke. 2007, 38: 1812-1819. 10.1161/STROKEAHA.106.479139. Kwee RM, van Engelshoven JM, Mess WH, ter Berg JW, Schreuder FH, Franke CL, Korten AG, Meems BJ, van Oostenbrugge RJ, Wildberger JE, Kooi ME: Reproducibility of fibrous cap status assessment of carotid artery plaques by contrast-enhanced MRI. Stroke. 2009, 40: 3017-3021. 10.1161/STROKEAHA.109.555052. Takaya N, Cai J, Ferguson MS, Yarnykh VL, Chu B, Saam T, Polissar NL, Sherwood J, Cury RC, Anders RJ, Broschat KO, Hinton D, Furie KL, Hatsukami TS, Yuan C: Intra- and interreader reproducibility of magnetic resonance imaging for quantifying the lipid-rich necrotic core is improved with gadolinium contrast enhancement. J Magn Reson Imaging. 2006, 24: 203-210. 10.1002/jmri.20599. Wasserman BA, Smith WI, Trout HH, Cannon RO, Balaban RS, Arai AE: Carotid artery atherosclerosis: in vivo morphologic characterization with gadolinium-enhanced double-oblique MR imaging initial results. Radiology. 2002, 223: 566-573. 10.1148/radiol.2232010659. Yuan C, Kerwin WS, Ferguson MS, Polissar N, Zhang S, Cai J, Hatsukami TS: Contrast-enhanced high resolution MRI for atherosclerotic carotid artery tissue characterization. J Magn Reson Imaging. 2002, 15: 62-67. 10.1002/jmri.10030.