An Optimized Informatics Pipeline for Mass Spectrometry-Based Peptidomics

American Chemical Society (ACS) - Tập 26 - Trang 2002-2008 - 2015
Chaochao Wu1, Matthew E. Monroe1, Zhe Xu1, Gordon W. Slysz1, Samuel H. Payne1, Karin D. Rodland1, Tao Liu1, Richard D. Smith1
1Biological Sciences Division, Pacific Northwest National Laboratory, Richland, USA

Tóm tắt

The comprehensive MS analysis of the peptidome, the intracellular and intercellular products of protein degradation, has the potential to provide novel insights on endogenous proteolytic processing and its utility in disease diagnosis and prognosis. Along with the advances in MS instrumentation and related platforms, a plethora of proteomics data analysis tools have been applied for direct use in peptidomics; however, an evaluation of the currently available informatics pipelines for peptidomics data analysis has yet to be reported. In this study, we began by evaluating the results of several popular MS/MS database search engines, including MS-GF+, SEQUEST, and MS-Align+, for peptidomics data analysis, followed by identification and label-free quantification using the well-established accurate mass and time (AMT) tag and newly developed informed quantification (IQ) approaches, both based on direct LC-MS analysis. Our results demonstrated that MS-GF+ outperformed both SEQUEST and MS-Align+ in identifying peptidome peptides. Using a database established from MS-GF+ peptide identifications, both the AMT tag and IQ approaches provided significantly deeper peptidome coverage and less missing data for each individual data set than the MS/MS methods, while achieving robust label-free quantification. Besides having an excellent correlation with the AMT tag quantification results, IQ also provided slightly higher peptidome coverage. Taken together, we propose an optimized informatics pipeline combining MS-GF+ for initial database searching with IQ (or AMT tag) approaches for identification and label-free quantification for high-throughput, comprehensive, and quantitative peptidomics analysis.

Tài liệu tham khảo

Schrader, M., Schulz-Knappe, P.: Peptidomics technologies for human body fluids. Trends Biotechnol. 19, S55–S60 (2001) Gelman, J.S., Fricker, L.D.: Hemopressin and other bioactive peptides from cytosolic proteins: are these non-classical neuropeptides? AAPS J. 12, 279–289 (2010) Li, L., Kelley, W.P., Billimoria, C.P., Christie, A.E., Pulver, S.R., Sweedler, J.V., Marder, E.: Mass spectrometric investigation of the neuropeptide complement and release in the pericardial organs of the crab, Cancer borealis. J. Neurochem. 87, 642–656 (2003) Hummon, A.B..., Amare, A., Sweedler, J.V.: Discovering new invertebrate neuropeptides using mass spectrometry. Mass Spectrom. Rev. 25, 77–98 (2006) Li, L., Sweedler, J.V.: Peptides in the brain: mass spectrometry-based measurement approaches and challenges. Annu Rev Anal Chem (Palo Alto, Calif) 1, 451–483 (2008) Ma, M., Chen, R., Ge, Y., He, H., Marshall, A.G., Li, L.: Combining bottom-up and top-down mass spectrometric strategies for de novo sequencing of the crustacean hyperglycemic hormone from Cancer borealis. Anal. Chem. 81, 240–247 (2009) Gelman, J.S., Sironi, J., Castro, L.M., Ferro, E.S., Fricker, L.D.: Peptidomic analysis of human cell lines. J. Proteome Res. 10, 1583–1592 (2011) Fricker, L.D., Gelman, J.S., Castro, L.M., Gozzo, F.C., Ferro, E.S.: Peptidomic analysis of HEK293T cells: effect of the proteasome inhibitor epoxomicin on intracellular peptides. J. Proteome Res. 11, 1981–1990 (2012) Villanueva, J., Shaffer, D.R., Philip, J., Chaparro, C.A., Erdjument-Bromage, H., Olshen, A.B..., Fleisher, M., Lilja, H., Brogi, E., Boyd, J., Sanchez-Carbayo, M., Holland, E.C., Cordon-Cardo, C., Scher, H.I., Tempst, P.: Differential exoprotease activities confer tumor-specific serum peptidome patterns. J. Clin. Invest. 116, 271–284 (2006) Fiedler, G.M., Baumann, S., Leichtle, A., Oltmann, A., Kase, J., Thiery, J., Ceglarek, U.: Standardized peptidome profiling of human urine by magnetic bead separation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clin. Chem. 53, 421–428 (2007) Xu, Z., Wu, C., Xie, F., Slysz, G.W., Tolic, N., Monroe, M.E., Petyuk, V.A., Payne, S.H., Fujimoto, G.M., Moore, R.J., Fillmore, T.L., Schepmoes, A.A., Levine, D.A., Townsend, R.R., Davies, S.R., Li, S., Ellis, M., Boja, E., Rivers, R., Rodriguez, H., Rodland, K.D., Liu, T., Smith, R.D.: Comprehensive quantitative analysis of ovarian and breast cancer tumor peptidomes. J. Proteome Res. 14, 422–433 (2015) Tinoco, A.D., Saghatelian, A.: Investigating endogenous peptides and peptidases using peptidomics. Biochemistry 50, 7447–7461 (2011) Van Dijck, A., Hayakawa, E., Landuyt, B., Baggerman, G., Van Dam, D., Luyten, W., Schoofs, L., De Deyn, P.P.: Comparison of extraction methods for peptidomics analysis of mouse brain tissue. J. Neurosci. Methods 197, 231–237 (2011) Finoulst, I., Pinkse, M., Van Dongen, W., Verhaert, P.: Sample preparation techniques for the untargeted LC-MS-based discovery of peptides in complex biological matrices. J. Biomed. Biotechnol. 2011, 245291 (2011) Rose, R.J., Damoc, E., Denisov, E., Makarov, A., Heck, A.J.: High-sensitivity Orbitrap mass analysis of intact macromolecular assemblies. Nat. Methods 9, 1084–1086 (2012) Kim, S., Pevzner, P.A.: MS-GF+ makes progress towards a universal database search tool for proteomics. Nat. Commun. 5, 5277 (2014) Mommen, G.P., Frese, C.K., Meiring, H.D., van Gaans-van den Brink, J., de Jong, A.P., van Els, C.A., Heck, A.J.: Expanding the detectable HLA peptide repertoire using electron-transfer/higher-energy collision dissociation (EThcD). Proc. Natl. Acad. Sci. U.S.A. 111, 4507–4512 (2014) Dasgupta, S., Castro, L.M., Dulman, R., Yang, C., Schmidt, M., Ferro, E.S., Fricker, L.D.: Proteasome inhibitors alter levels of intracellular peptides in HEK293T and SH-SY5Y cells. PLoS One 9, e103604 (2014) Liu, X., Sirotkin, Y., Shen, Y., Anderson, G., Tsai, Y.S., Ting, Y.S., Goodlett, D.R., Smith, R.D., Bafna, V., Pevzner, P.A.: Protein identification using top-down. Mol. Cell. Proteomics 11, 008524 (2012) Menschaert, G., Vandekerckhove, T.T., Baggerman, G., Schoofs, L., Luyten, W., Van Criekinge, W.: Peptidomics coming of age: a review of contributions from a bioinformatics angle. J. Proteome Res. 9, 2051–2061 (2010) Stingl, C., Soderquist, M., Karlsson, O., Boren, M., Luider, T.M.: Uncovering effects of ex vivo protease activity during proteomics and peptidomics sample extraction in rat brain tissue by oxygen-18 labeling. J. Proteome Res. 13, 2807–2817 (2014) Quintana, L.F., Campistol, J.M., Alcolea, M.P., Banon-Maneus, E., Sol-Gonzalez, A., Cutillas, P.R.: Application of label-free quantitative peptidomics for the identification of urinary biomarkers of kidney chronic allograft dysfunction. Mol. Cell. Proteomics 8, 1658–1673 (2009) Smith, R.D., Anderson, G.A., Lipton, M.S., Pasa-Tolic, L., Shen, Y., Conrads, T.P., Veenstra, T.D., Udseth, H.R.: An accurate mass tag strategy for quantitative and high-throughput proteome measurements. Proteomics 2, 513–523 (2002) Petyuk, V.A., Mayampurath, A.M., Monroe, M.E., Polpitiya, A.D., Purvine, S.O., Anderson, G.A., Camp II, D.G., Smith, R.D.: DtaRefinery, a software tool for elimination of systematic errors from parent ion mass measurements in tandem mass spectra data sets. Mol. Cell. Proteomics 9, 486–496 (2010) Zimmer, J.S., Monroe, M.E., Qian, W.J., Smith, R.D.: Advances in proteomics data analysis and display using an accurate mass and time tag approach. Mass Spectrom. Rev. 25, 450–482 (2006) Monroe, M.E., Tolic, N., Jaitly, N., Shaw, J.L., Adkins, J.N., Smith, R.D.: VIPER: an advanced software package to support high-throughput LC-MS peptide identification. Bioinformatics 23, 2021–2023 (2007) Stanley, J.R., Adkins, J.N., Slysz, G.W., Monroe, M.E., Purvine, S.O., Karpievitch, Y.V., Anderson, G.A., Smith, R.D., Dabney, A.R.: A statistical method for assessing peptide identification confidence in accurate mass and time tag proteomics. Anal. Chem. 83, 6135–6140 (2011) Jaitly, N., Mayampurath, A., Littlefield, K., Adkins, J.N., Anderson, G.A., Smith, R.D.: Decon2LS: an open-source software package for automated processing and visualization of high resolution mass spectrometry data. BMC Bioinformatics 10, 87 (2009) Slysz, G.W., Steinke, L., Ward, D.M., Klatt, C.G., Clauss, T.R., Purvine, S.O., Payne, S.H., Anderson, G.A., Smith, R.D., Lipton, M.S.: Automated data extraction from in situ protein-stable isotope probing studies. J. Proteome Res. 13, 1200–1210 (2014) Holman, J.D., Ma, Z.Q., Tabb, D.L.: Identifying proteomic LC-MS/MS data sets with Bumbershoot and IDPicker. Curr. Protoc. Bioinformatics 13, Unit13–Unit17 (2012) Taverner, T., Karpievitch, Y.V., Polpitiya, A.D., Brown, J.N., Dabney, A.R., Anderson, G.A., Smith, R.D.: DanteR: an extensible R-based tool for quantitative analysis of -omics data. Bioinformatics 28, 2404–2406 (2012) Xie, F., Liu, T., Qian, W.J., Petyuk, V.A., Smith, R.D.: Liquid chromatography-mass spectrometry-based quantitative proteomics. J. Biol. Chem. 286, 25443–25449 (2011) Lipton, M.S., Pasa-Tolic, L., Anderson, G.A., Anderson, D.J., Auberry, D.L., Battista, J.R., Daly, M.J., Fredrickson, J., Hixson, K.K., Kostandarithes, H., Masselon, C., Markillie, L.M., Moore, R.J., Romine, M.F., Shen, Y., Stritmatter, E., Tolic, N., Udseth, H.R., Venkateswaran, A., Wong, K.K., Zhao, R., Smith, R.D.: Global analysis of the Deinococcus radiodurans proteome by using accurate mass tags. Proc. Natl. Acad. Sci. U. S. A. 99, 11049–11054 (2002)