Synthesis of SnO2–ZnO heterostructured nanofibers for enhanced ethanol gas-sensing performance

Earthquake Spectra - Tập 221 - Trang 88-95 - 2015
S.H. Yan1, S.Y. Ma1, W.Q. Li1, X.L. Xu1, L. Cheng1, H.S. Song1, X.Y. Liang1
1College of Physics and Electronic Engineering, Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, Northwest Normal University, Lanzhou, Gansu 730070, China

Tài liệu tham khảo

Bhardwaj, 2010, Electrospinning: a fascinating fiber fabrication technique, Biotechnol. Adv., 28, 325, 10.1016/j.biotechadv.2010.01.004 Comini, 2002, Local impedance imaging and spectroscopy of polycrystalline ZnO using contact atomic force microscopy, Appl. Phys. Lett., 81, 1869, 10.1063/1.1504867 Kim, 2006, Microsphere templating as means of enhancing surface activity and gas sensitivity of CaCu3Ti4O12 thin films, Nano Lett., 6, 193, 10.1021/nl051965p Tamaki, 2008, Ultrahigh-sensitive WO3 nanosensor with interdigitated Au nano-electrode for NO2 detection, Sens. Actuators B: Chem., 132, 234, 10.1016/j.snb.2008.01.027 Wang, 2008, Synthesis and high gas sensitivity of tin oxide nanotubes, Sens. Actuators B: Chem., 131, 313, 10.1016/j.snb.2007.11.032 Choi, 2008, Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity, Nanotechnology, 19, 095508, 10.1088/0957-4484/19/9/095508 Choi, 2010, Design of selective gas sensors using electrospun Pd-doped SnO2 hollow nanofibers, Sens. Actuators B: Chem., 150, 191, 10.1016/j.snb.2010.07.013 Cheng, 2014, Nickel-doped tin oxide hollow nanofibers prepared by electrospinning for acetone sensing, Sens. Actuators B: Chem., 190, 78, 10.1016/j.snb.2013.08.098 Mohanapriya, 2013, Enhanced ethanol-gas sensing performance of Ce-doped SnO2 hollow nanofibers prepared by electrospinning, Sens. Actuators B: Chem., 188, 872, 10.1016/j.snb.2013.07.016 Du, 2012, Formaldehyde gas sensor based on SnO2/In2O3 hetero-nanofibers by a modified double jets electrospinning process, Sens. Actuators B: Chem., 166–167, 746, 10.1016/j.snb.2012.03.055 Choi, 2013, Synthesis and gas sensing performance of ZnO–SnO2 nanofiber-nanowire stem-branch heterostructure, Sens. Actuators B: Chem., 181, 787, 10.1016/j.snb.2013.02.010 Anaraki Firooz, 2010, Synthesis and gas-sensing properties of nano and mesoporous MoO3-doped SnO2, Sens. Actuators B: Chem., 147, 554, 10.1016/j.snb.2010.03.021 Yamazoe, 2005, Toward innovations of gas sensor technology, Sens. Actuators B: Chem., 108, 2, 10.1016/j.snb.2004.12.075 Liu, 2007, An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dualspinneret method, Nano Lett., 7, 1081, 10.1021/nl061898e Tennakone, 2001, Enhanced efficiency of a dye-sensitized solar cell made from MgO-coated nanocrystalline SnO2, Jpn. J. Appl. Phys., 40, 732, 10.1143/JJAP.40.L732 Zheng, 2011, Formaldehyde sensing properties of electrospun NiO-doped SnO2 nanofibers, Sens. Actuators B: Chem., 156, 723, 10.1016/j.snb.2011.02.026 Song, 2009, A highly sensitive ethanol sensor based on mesoporous ZnO–SnO2 nanofibers, Nanotechnology, 20, 075501, 10.1088/0957-4484/20/7/075501 Kuang, 2005, Tailoring the optical property by a three-dimensional epitaxial heterostructure: a case of ZnO/SnO2, J. Am. Chem. Soc., 127, 11777, 10.1021/ja052259t Park, 2010, SnO2–ZnO hybrid nanofibers-based highly sensitive nitrogen dioxides sensor, Sens. Actuators B: Chem., 145, 592, 10.1016/j.snb.2009.11.023 Tang, 2014, Hollow hierarchical SnO2–ZnO composite nanofibers with heterostructure based on electrospinning method for detecting methanol, Sens. Acuators B: Chem., 192, 543, 10.1016/j.snb.2013.11.003 Le, 2013, Facile synthesis of SnO2–ZnO core–shell nanowires for enhanced ethanol-sensing performance, Curr. Appl. Phys., 13, 1637, 10.1016/j.cap.2013.06.024 Zhao, 2011, Electrospun Cu-doped ZnO nanofibers for H2S sensing, Sens. Actuators B: Chem., 156, 588, 10.1016/j.snb.2011.01.070 Qi, 2009, Improved NH3, C2H5OH, and CH3COCH3 sensing properties of SnO2 nanofibers by adding block copolymer P123, Sens. Actuators B: Chem., 141, 174, 10.1016/j.snb.2009.05.039 Kim, 2009, Highly sensitive and ultra-fast responding gas sensors using self-assembled hierarchical SnO2 spheres, Sens. Actuators B: Chem., 136, 138, 10.1016/j.snb.2008.11.016 Liu, 2011, Improved selective acetone sensing properties of Co-doped ZnO nanofibers by electrospinning, Sens. Actuators B: Chem., 155, 782, 10.1016/j.snb.2011.01.047 Tan, 2008, Gas sensing properties of tin oxide nanostructures synthesized via a solid-state reaction method, Nanotechnology, 19, 255706, 10.1088/0957-4484/19/25/255706 Park, 2011, A model for the enhancement of gas sensing properties in SnO2–ZnO core–shell nanofibres, J. Phys. D: Appl. Phys., 44, 205403, 10.1088/0022-3727/44/20/205403 Mondal, 2014, ZnO–SnO2 based composite type gas sensor for selective hydrogen sensing, Sens. Actuators B: Chem., 194, 389, 10.1016/j.snb.2013.12.093 Zeng, 2012, Enhanced gas sensing properties by SnO2 nanosphere functionalized TiO2 nanobelt, J. Mater. Chem., 22, 3544, 10.1039/c2jm15017d Sharma, 2013, WO3 nanoclusters-SnO2 film gas sensor heterostructure with enhanced response for NO2, Sens. Actuators B: Chem., 176, 675, 10.1016/j.snb.2012.09.094 Zhang, 2008, Fabrication of SnO2–ZnO nanocomposite sensor for selective sensing of trimethylamine and the freshness of fish, Sens. Actuators B: Chem., 134, 403, 10.1016/j.snb.2008.05.015 Ponzoni, 2006, Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks, Appl. Phys. Lett., 88, 203101, 10.1063/1.2203932 Ahn, 2008, Gas sensing properties of defect-controlled ZnO-nanowire gas sensor, Appl. Phys. Lett., 93, 263103, 10.1063/1.3046726