Dealing with the unknown: Metabolomics and Metabolite Atlases

American Chemical Society (ACS) - Tập 21 - Trang 1471-1476 - 2011
Benjamin P. Bowen1, Trent R. Northen1
1Department of GTL Bioenergy and Structural Biology, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, USA

Tóm tắt

Metabolomics is the comprehensive profiling of the small molecule composition of a biological sample. Since metabolites are often the indirect products of gene expression, this approach is being used to provide new insights into a variety of biological systems (clinical, bioenergy, etc.). A grand challenge for metabolomics is the complexity of the data, which often include many experimental artifacts. This is compounded by the tremendous chemical diversity of metabolites. Identification of each uncharacterized metabolite is in many ways its own puzzle (compared with proteomics, which is based on predictable fragmentation patterns of polypeptides). Therefore, effective data reduction/prioritization strategies are critical for this rapidly developing field. Here we review liquid chromatography electrospray ionization mass spectrometry (LC/MS)-based metabolomics, methods for feature finding/prioritization, approaches for identifying unknown metabolites, and construction of method specific ‘Metabolite Atlases’.

Tài liệu tham khảo

Fiehn, O. Metabolomics—The Link Between Genotypes and Pheno-types. Plant Mol. Biol. 2002, 48, 155–171. Dettmer, K.; Aronov, P. A.; Hammock, B. D. Mass Spectrometry-Based Metabolomics. Mass Spectrom. Rev. 2007, 26, 51–78. Jansson, J.; Willing, B.; Lucio, M.; Fekete, A.; Dicksved, J.; Halfvarson, J.; Tysk, C.; Schmitt-Kopplin, P. Metabolomics Reveals Metabolic Biomarkers of Crohn’s Disease. PLoS ONE. 2009, 4, e6386. Ceglarek, U.; Leichtle, A.; Brügel, M.; Kortz, L.; Brauer, R.; Bresler, K.; Thiery, J.; Fiedler, G. Challenges and Developments in Tandem Mass Spectrometry-Based Clinical Metabolomics. Mol. Cell. Endocrinol. 2009, 301, 266–271. Smith, C. A.; O’Maille, G.; Want, E. J.; Qin, C.; Trauger, S. A.; Brandon, T. R.; Custodio, D. E.; Abagyan, R.; Siuzdak, G. METLIN—A Metabolite Mass Spectral Database. Therapeutic Drug Monitoring 2005, 27, 747–751. Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. Caspi, R.; Foerster, H.; Fulcher, C.; Kaipa, P.; Krummenacker, M.; Latendresse, M.; Paley, S.; Rhee, S.; Shearer, A.; Tissier, C. The MetaCyc Database of Metabolic Pathways and Enzymes and the BioCyc Collection of Pathway/Genome Databases. Nucleic Acids Res. 2008, 36, D623. Kopka, J.; Schauer, N.; Krueger, S.; Birkemeyer, C.; Usadel, B.; Bergmuller, E.; Dormann, P.; Weckwerth, W.; Gibon, Y.; Stitt, M.; Willmitzer, L.; Fernie, A. R.; Steinhauser, D. [email protected]: The Golm Metabolome Database. Bioinformatics 2005, 21, 1635–1638. Wishart, D.; Tzur, D.; Knox, C.; Eisner, R.; Guo, A.; Young, N.; Cheng, D.; Jewell, K.; Arndt, D.; Sawhney, S. HMDB: The Human Metabolome Database. Nucleic Acids Res. 2007, 35 (Database Issue), D521-D526. Fahy, E.; Subramaniam, S.; Brown, H. A.; Glass, C. K.; Merrill, A. H.; Murphy, R. C.; Raetz, C. R. H.; Russell, D. W.; Seyama, Y.; Shaw, W.; Shirnizu, T.; Spener, F.; van Meer, G.; VanNieuwenhze, M. S.; White, S. H.; Witztum, J. L.; Dennis, E. A. A Comprehensive Classification System for Lipids. J. Lipid Res. 2005, 46, 839–861. Goodacre, R.; Vaidyanathan, S.; Dunn, W.; Harrigan, G.; Kell, D. Metabolomics by Numbers: Acquiring and Understanding Global Metabolite Data. Trends Biotechnol. 2004, 22, 245–252. Chen, C.; Gonzalez, F.; Idle, J. LC-MS-Based Metabolomics in Drug Metabolism. Drug Metab. Rev. 2007, 39, 581–597. Prakash, C.; Shaffer, C.; Nedderman, A. Analytical Strategies for Identifying Drug Metabolites. Mass Spectrom. Rev. 2007, 26, 340–369. Baran, R.; Reindl, W.; Northen, T. Mass Spectrometry Based Metabolomics and Enzymatic Assays for Functional Genomics. Curr. Opin. Microbiol. 2009, 12, 547–552. Jain, M.; Petzold, C. J.; Schelle, M. W.; Leavell, M. D.; Mougous, J. D.; Bertozzi, C. R.; Leary, J. A.; Cox, J. S. Lipidomics Reveals Control of Mycobacterium tuberculosis Virulence Lipids Via Metabolic Coupling. Proc. Natl. Acad. Sci U.S.A. 2007, 104, 5133–5138. Garcia, D. E.; Baidoo, E. E.; Benke, P. I.; Pingitore, F.; Tang, Y. J.; Villa, S.; Keasling, J. D. Separation and Mass Spectrometry in Microbial Metabolomics. Curr. Opin. Microbiol. 2008, 11, 233–239. Bajad, S. U.; Lu, W.Y.; Kimball, E. H.; Yuan, J.; Peterson, C.; Rabinowitz, J. D. Separation and Quantitation of Water Soluble Cellular Metabolites by Hydrophilic Interaction Chromatography-Tandem Mass Spectrometry. J. Chromatogr. A 2006, 1125, 76–88. Pesek, J. J.; Matyska, M. T.; Hearn, M. T. W.; Boysen, R. I. Aqueous Normal-Phase Retention of Nucleotides on Silica Hydride Columns. J. Chromatogr. A 2009, 1216, 1140–1146. Want, E.; O’Maille, G.; Smith, C.; Brandon, T.; Uritboonthai, W.; Qin, C.; Trauger, S.; Siuzdak, G. Solvent-Dependent Metabolite Distribution, Clustering, and Protein Extraction for Serum Profiling with Mass Spectrometry. Anal. Chem. 2006, 78, 743–752. Crews, B.; Wikoff, W. R.; Patti, G. J.; Woo, H. K.; Kalisiak, E.; Heideker, J.; Siuzdak, G. Variability Analysis of Human Plasma and Cerebral Spinal Fluid Reveals Statistical Significance of Changes in Mass Spectrometry-Based Metabolomics Data. Anal. Chem. 2009, 81, 8538–8544. Jenkins, H.; Hardy, N.; Beckmann, M.; Draper, J.; Smith, A.; Taylor, J.; Fiehn, O.; Goodacre, R.; Bino, R.; Hall, R. A Proposed Framework for the Description of Plant Metabolomics Experiments and Their Results. Nat. Biotechnol. 2004, 22, 1601–1606. Fiehn, O.; Wohlgemuth, G.; Scholz, M.; Kind, T.; Lee, D.; Lu, Y.; Moon, S.; Nikolau, B. Quality Control for Plant Metabolomics: Reporting MSI-Compliant Studies. Plant J. 2008, 53, 691–704. Sumner, L. W.; Amberg, A.; Barrett, D.; Beale, M. H.; Beger, R.; Daykin, C. A.; Fan, T. W. M.; Fiehn, O.; Goodacre, R.; Griffin, J. L.; Hankemeier, T.; Hardy, N.; Harnly, J.; Higashi, R.; Kopka, J.; Lane, A. N.; Lindon, J. C.; Marriott, P.; Nicholls, A. W.; Reily, M. D.; Thaden, J. J.; Viant, M. R. Proposed Minimum Reporting Standards for Chemical Analysis. Metabolomics 2007, 3, 211–221. Brazma, A.; Hingamp, P.; Quackenbush, J.; Sherlock, G.; Spellman, P.; Stoeckert, C.; Aach, J.; Ansorge, W.; Ball, C. A.; Causton, H. C.; Gaasterland, T.; Glenisson, P.; Holstege, F. C. P.; Kim, I. F.; Markowitz, V.; Matese, J. C.; Parkinson, H.; Robinson, A.; Sarkans, U.; Schulze-Kremer, S.; Stewart, J.; Taylor, R.; Vilo, J.; Vingron, M. Minimum Information About a Microarray Experiment (MIAME)—Toward Standards for Microarray Data. Nat. Genet. 2001, 29, 365–371. Smith, C. A.; Want, E. J.; O’Maille, G.; Abagyan, R.; Siuzdak, G. XCMS: Processing Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment, Matching, and Identification. Anal. Chem. 2006, 78, 779–787. Bellew, M.; Coram, M.; Fitzgibbon, M.; Igra, M.; Randolph, T.; Wang, P.; May, D.; Eng, J.; Fang, R. H.; Lin, C. W.; Chen, J. Z.; Goodlett, D.; Whiteaker, J.; Paulovich, A.; McIntosh, M. A Suite of Algorithms for the Comprehensive Analysis of Complex Protein Mixtures Using High-Resolution LC-MS. Bioinformatics 2006, 22, 1902–1909. Katajamaa, M.; Oresic, M. Processing Methods for Differential Analysis of LC/MS Profile Data. BMC Bioinformatics 2005, 6, 179. Katajamaa, M.; Orešič, M. Data Processing for Mass Spectrometry-Based Metabolomics. J. Chromatogr. A 2007, 1158, 318–328. Werner, E.; Croixmarie, V.; Umbdenstock, T.; Ezan, E.; Chaminade, P.; Tabet, J.; Junot, C. Mass Spectrometry-Based Metabolomics: Accelerating the Characterization of Discriminating Signals by Combining Statistical Correlations and Ultrahigh Resolution. Anal. Chem. 2008, 80, 4918–4932. Tautenhahn, R.; Bottcher, C.; Neumann, S. Highly Sensitive Feature Detection for High Resolution LC/MS. BMC Bioinformatics 2008, 9, 504. Taylor, J.; King, R. D.; Altmann, T.; Fiehn, O. Application of Metabolomics to Plant Genotype Discrimination Using Statistics and Machine Learning. Bioinformatics 2002, 18, S241-S248. Patterson, A. D.; Li, H.; Fichier, G. S.; Krausz, K. W.; Weinstein, J. N.; Formace, A. J.; Gonzalez, F. J.; Idle, J. R. UPLC-ESI-TOEMS-Based Metabolomics and Gene Expression Dynamics Inspector Self-Organizing Metabolomic Maps as Tools for Understanding the Cellular Response to Ionizing Radiation. Anal. Chem. 2008, 80, 665–674. Hirayama, A.; Kami, K.; Sugimoto, M.; Sugawara, M.; Toki, N.; Onozuka, H.; Kinoshita, T.; Saito, N.; Ochiai, A.; Tomita, M.; Esumi, H.; Soga, T. Quantitative Metabolome Profiling of Colon and Stomach Cancer Microenvironment by Capillary Electrophoresis Time-of-Flight Mass Spectrometry. Cancer Res. 2009, 69, 4918–4925. Tohge, T.; Fernie, A. R. Web-Based Resources for Mass-Spectrometry-Based Metabolomics: A User’s Guide. Photochemistry 2009, 70, 450–456. Kind, T.; Scholz, M.; Fiehn, O. How Large is the Metabolome? A Critical Analysis of Data Exchange Practices in Chemistry. PLoS ONE. 2009, 4, e5440. Wikoff, W. R.; Pendyala, G.; Siuzdak, G.; Fox, H. S. Metabolomic Analysis of the Cerebrospinal Fluid Reveals Changes in Phospholipase Expression in the CNS of SIV-Infected Macaques. J. Clin. Investig. 2008, 118, 2661–2669. Tyburski, J. B.; Patterson, A. D.; Krausz, K. W.; Slavik, J.; Fornace, A. J.; Gonzalez, F. J.; Idle, J. R. Radiation metabolomics. 1. Identification of Minimally Invasive Urine Biomarkers for γ-Radiation Exposure in Mice. Radiat. Res. 2008, 170, 1–14. Soga, T.; Baran, R.; Suematsu, M.; Ueno, Y.; Ikeda, S.; Sakurakawa, T.; Kakazu, Y.; Ishikawa, T.; Robert, M.; Nishioka, T.; Tomita, M. Differential Metabolomics Reveals Ophthalmic Acid as an Oxidative Stress Biomarker Indicating Hepatic Glutathione Consumption. J. Biol. Chemi. 2006, 281, 16768–16776. Lin, Y.; Schiavo, S.; Orjala, J.; Vouros, P.; Kautz, R. Microscale LC-MS-NMR Platform Applied to the Identification of Active Cyanobacterial Metabolites. Anal. Chem. 2008, 80, 8045–8054. Trauger, S. A.; Kalisak, E.; Kalisiak, J.; Morita, H.; Weinberg, M. V.; Menon, A. L.; Poole, F. L.; Adams, M. W. W.; Siuzdak, G. Correlating the Transcriptome, Proteome, and Metabolome in the Environmental Adaptation of a Hyperthermophile. J. Proteome Res. 2008, 7, 1027–1035. Tiller, P. R.; Yu, S.; Castro-Perez, J.; Fillgrove, K. L.; Baillie, T. A. High-Throughput, Accurate Mass Liquid Chromatography/Tandem Mass Spectrometry on a Quadrupole Time-of-Flight System as a ‘First-Line” Approach for Metabolite Identification Studies. Rapid Commun. Mass Spectrom. 2008, 22, 1053–1061. Benton, H.; Wong, D.; Trauger, S.; Siuzdak, G. XCMS2: Processing Tandem Mass Spectrometry Data for Metabolite Identification and Structural Characterization. Anal. Chem. 2008, 80, 6382–6389. Holsclaw, C. M.; Sogi, K. M.; Gilmore, S. A.; Schelle, M. W.; Leavell, M. D.; Bertozzi, C.R.; Leary, J. A. Structural Characterization of a Novel Sulfated Menaquinone produced by stf3 from Mycobacterium tuberculosis. ACS Chem. Biol. 2008, 3, 619–624. Giavalisco, P.; Hummel, J.; Lisec, J.; Inostroza, A.C.; Catchpole, G.; Willmitzer, L. High-Resolution Direct Infusion-Based Mass Spectrometry in Combination with Whole C-13 Metabolome Isotope Labeling Allows Unambiguous Assignment of Chemical Sum Formulas. Anal. Chem. 2008, 80, 9417–9425. Giavalisco, P.; Kohl, K.; Hummel, J.; Seiwert, B.; Willmitzer, L. C-13 Isotope-Labeled Metabolomes Allowing for Improved Compound Annotation and Relative Quantification in Liquid Chromatography-Mass Spectrometry-Based Metabolomic Research. Anal. Chem. 2009, 81, 6546–6551. Hegeman, A. D.; Schulte, C. F.; Cui, Q.; Lewis, I. A.; Huttlin, E. L.; Eghbalnia, H.; Harms, A. C.; Ulrich, E. L.; Markley, J. L.; Sussman, M. R. Stable Isotope Assisted Assignment of Elemental Compositions for Metabolomics. Anal. Chem. 2007, 79, 6912–6921. Hnatyshyn, S.; Sanders, M.; Shipkova, P.; Luk, E.; Warrack, B.; Reily, M. Automated Mass Spectra Interpretation Approach to Data Reduction for LC-MS Metabolomics Analysis. Proceedings of the ASMS Conference on Mass Spectrometry and Allied Topics; Denver, CO, June, 2008. Draper, J.; Enot, D. P.; Parker, D.; Beckmann, M.; Snowdon, S.; Lin, W. C.; Zubair, H. Metabolite Signal Identification in Accurate Mass Metabolomics Data with MZedDB, an Interactive m/z Annotation Tool Utilizing Predicted Ionization Behavior ‘Rules’. BMC Bioinformatics 2009, 10, 227. Hochreiter, S.; Wagner, R. R. Bioinformatics Research and Development. Lecture notes in computer science. Proceedings of the First International Conference, BIRD 2007, Berlin, Germany, March, 2007. New York: Springer: xvi, p. 482. Kind, T.; Fiehn, O. Seven Golden Rules for Heuristic Filtering of Molecular Formulas Obtained by Accurate Mass Spectrometry. BMC Bioinformatics 2007, 8, 105. Wren, J. D. A Global Meta-Analysis of Microarray Expression Data to Predict Unknown Gene Functions and Estimate the Literature-Data Divide. Bioinformatics 2009, 25, 1694–1701.