A Class of Conceptual Spaces Consisting of Boundaries of Infinite p-Ary Trees
Tóm tắt
A new construction of a certain conceptual space is presented. Elements of this conceptual space correspond to (and serve as code for) concept elements of reality, which potentially comprise an infinite number of qualities. This construction of a conceptual space solves a problem stated by Dietz and his co-authors in 2013 in the context of Voronoi diagrams. The fractal construction of the conceptual space is that this problem simply does not pose itself. The concept of convexity is discussed in this new conceptual space. Moreover, the meaning of convexity is discussed in full generality, for example when space is deprived of it, its substitutes for concept domains are considered.
Tài liệu tham khảo
Anashin, V., & Khrennikov, A. (2009). De Gruyter Expositions in Mathematics. In Applied algebraic dynamics (Vol. 49). Berlin: Walter de Gruyter & Co.
Axler, S., Bourdon, P., & Ramey, W. (2001). Harmonic function theory (Graduate texts in mathematics, book 137) (2nd ed.). Berlin: Springer.
Borel, A., & Ji, L. (2006). Compacttification of symmetric and locally symmetric spaces. Basel: Birkhäuser.
Bridson, M., & Haefliger, A. (1999). Metric spaces of non-positive curvature. Berlin: Springer.
Coornaert, M., Delzant, T., & Papadopoulos, A. (1990). Géométrie et théorie des groupes. Berlin: Springer. (Les groupes hyperboliques de Gromov. [Gromov hyperbolic groups], With an English summary).
de Saussure, F. (1916). Cours de linguistique gnrle. In C. Bally & A. Sechehaye (Eds.), In collaboration with A. Riedlinger. Lausanne: Payot.
Diestel, R. (2010). Graph theory (5th ed.). Berlin: Springer. Graduate Texts in Mathematics (Book 173).
Dietz, R. (2013). Comparative concepts. Synthese, 190, 139–170.
Douven, I., Decock, L., Dietz, R., & Égré, P. (2013). Vagueness: A conceptual spacess approach. Journal of Philosophical Logic, 42, 137–160.
Dragovich, B., Khrennikov, A. Y., Kozyrev, S. V., Volovich, I. V., & Zelenov, E. I. (2017). \(p\)-adic mathematical physics: The first 30 years. Ultrametric Analysis and Applications, 9(2), 87–121.
Falconer, K. (2003). Fractal geometry: Mathematical foundations and applications (2nd ed.). Hoboken: Wiley.
Gärdenfors, P. (2000). Conceptual spaces: The geometry of thought. Cambridge, MA: MIT Press.
Gärdenfors, P. (2017). The geometry of meaning. Cambridge, MA: MIT Press.
Ghys, É., & de la Harpe, P. (Eds.). (1990). Sur les groupes hyperboliques dáprès Mikhael Gromov. Boston, MA: Birkhäuser Boston Inc. (Papers from the Swiss Seminar on Hyperbolic Groups held in Bern, 1988.).
Gromov, M. (1987). Hyperbolic groups, Essays in group theory (pp. 75–263). New York: Springer.
Gromov, M. (1993). Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (Sussex, 1991) (pp. 1–295). Cambridge: Cambridge Univ. Press.
Harris, J., Hirst, J. L., & Mossinghoff, M. (2008). Combinatorics and graph theory (Undergraduate texts in mathematics) (2nd ed.). Berlin: Springer.
Heinonen, J. (2001). Lectures on analysis on metric spaces (Universitext). Berlin: Springer.
Hernandez-Conde, J. V. (2017). A case against convexity in conceptual spaces. Synthese, 194, 4010–4037.
Iurato, G., & Khrennikov, A. Y. (2015). Hysteresis model of unconscious–conscious interconnection: Exploring dynamics on \(m\)-trees. p-Adic Numbers, Ultrametric Analysis and Applications, 7(4), 312–321.
Iurato, G., Khrennikov, A. Y., & Murtagh, F. (2016). Formal foundations for the origins of human consciousness. p-Adic Numbers, Ultrametric Analysis and Applications, 8(4), 249–279.
Jaġer, G. (2006). Convex meanings and evolutionary stability. In Proceedings of the 6th international conference on evolution of language, pp. 139–144.
Johnson, M. (1987). The Body in the Mind: The Bodily Basis of Meaning, Imagination, and Reason. Chicago, IL: University of Chicago Press.
Kapovich, I., & Benkali, N. (2002). Boundaries of hyperbolic groups. In R. Gilman, et al. (Eds.), Combinatorial and geometric group theory, Contemporary mathematics (Vol. 296, pp. 39–94). Amer. Math. Soc., Providence, RI.
Kelley, J. L. (2017). General topology. Mineola, NY: Dover Publications, INC.
Khrennikov, A. Y. (2014). Cognitive processes of the brain: An ultrametric model of information dynamics in unconsciousness. p-Adic Numbers, Ultrametric Analysis and Applications, 6(4), 293–302.
Khrennikov, A. (2016). p-adic numbers: from superstrings and molecular motors to cognition and psychology. Banach Center Publications, 109, 47–56.
Lakoff, G. (1987). Women, Fire and Dangerous things: What Categories Reveal about the Mind. Chicago, IL: University of Chicago Press.
Langacker, R. W. (1986). An introduction to cognitive grammar. Cognitive Science, 10, 1–40.
Langacker, R. W. (2008). Cognitive grammar: A basic introduction. Oxford: Oxford University Press.
Mendel, J. M. (2007). Computing with words and its relationships with fuzzistics. Information Sciences, 177, 985–1006.
Okabe, A., & Boots, B. (2000). Spatial tessellations: Concepts and applications of voronoi diagrams. Hoboken: Wiley.
Rickard, J. T. (2006). A concept geometry for conceptual spaces. Fuzzy Optimization and Decision Making, 5, 311–329.
Rickard, J. T., Aisbett, J., & Gibbon, G. (2007). Reformulation of the theory of conceptual spaces. Information Sciences, 177, 4539–4565.
Robert, A. M. (2000). A course in p-adic analysis (Graduate texts in mathematics). Berlin: Springer.
Rudin, W. (1976). Principles of mathematical analysis (International series in pure and applied mathematics) (3rd ed.). New York: McGraw-Hill Education.
Sally, P. J, Jr. (1998). An introduction to \(p\)-adic fields, harmonic analysis and the representation theory of \(\text{ SL }_2\). Letters in Mathematical Physics, 46, 1–47.
Schwabl, F. (2007). Quantum mechanics (4th ed.). Berlin, Heidelberg: Springer.
Urban, R., & Grzelińska, M. (2017). Potential theory approach to the algorithm of partitioning of the conceptual spaces. Cognitive Studies|Études cognitives, 17, 1–10.
Wierzbicka, A. (1972). Semantic primitives. New York: Athenüm.
Zhu, H. P., Zhang, H. J., & Yu, Y. (2006). Deep into color names: Matching color descriptions by their fuzzy semantics. Lecture Notes in Computer Science, 4183, 138–149.