Nonlinear nonhomogeneous Robin problems with dependence on the gradient

Yunru Bai1, Leszek Gasiński1, Nikolaos S. Papageorgiou2
1Faculty of Mathematics and Computer Science, Jagiellonian University, Kraków, Poland
2Department of Mathematics, National Technical University, Athens, Greece

Tóm tắt

Từ khóa


Tài liệu tham khảo

Gasiński, L., Papageorgiou, N.S.: Nonlinear Analysis. Chapman & Hall, Boca Raton (2006)

Lieberman, G.M.: Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. 12, 1203–1219 (1988)

Lieberman, G.M.: The natural generalization of the natural conditions of Ladyzhenskaya and Ural’tseva for elliptic equations. Commun. Partial Differ. Equ. 16, 311–361 (1991)

de Figueiredo, D., Girardi, M., Matzeu, M.: Semilinear elliptic equations with dependence on the gradient via mountain-pass techniques. Differ. Integral Equ. 17, 119–126 (2004)

Girardi, M., Matzeu, M.: Positive and negative solutions of a quasi-linear elliptic equation by a mountain pass method and truncature techniques. Nonlinear Anal. 59, 199–210 (2004)

Faraci, F., Motreanu, D., Puglisi, D.: Positive solutions of quasi-linear elliptic equations with dependence on the gradient. Calc. Var. Partial Differ. Equ. 54, 525–538 (2015)

Huy, N.B., Quan, B.T., Khanh, N.H.: Existence and multiplicity results for generalized logistic equations. Nonlinear Anal. 144, 77–92 (2016)

Iturriaga, L., Lorca, S., Sánchez, J.: Existence and multiplicity results for the p-Laplacian with a p-gradient term. Nonlinear Differ. Equ. Appl. 15, 729–743 (2008)

Ruiz, D.: A priori estimates and existence of positive solutions for strongly nonlinear problems. J. Differ. Equ. 199, 96–114 (2004)

Averna, D., Motreanu, D., Tornatore, E.: Existence and asymptotic properties for quasilinear elliptic equations with gradient dependence. Appl. Math. Lett. 61, 102–107 (2016)

Faria, L.F.O., Miyagaki, O.H., Motreanu, D.: Comparison and positive solutions for problems with the ( p , q ) $(p,q)$ -Laplacian and a convection term. Proc. Edinb. Math. Soc. (2) 57, 687–698 (2014)

Tanaka, M.: Existence of a positive solution for quasilinear elliptic equations with nonlinearity including the gradient. Bound. Value Probl. 2013, 173 (2013)

Gasiński, L., Papageorgiou, N.S.: Positive solutions for nonlinear elliptic problems with dependence on the gradient. J. Differ. Equ. 263, 1451–1476 (2017)

Pucci, P., Serrin, J.: The Maximum Principle. Birkhäuser, Basel (2007)

Gasiński, L., O’Regan, D., Papageorgiou, N.: Positive solutions for nonlinear nonhomogeneous Robin problems. Z. Anal. Anwend. 34, 435–458 (2015)

Papageorgiou, N.S., Rădulescu, V.D.: Coercive and noncoercive nonlinear Neumann problems with indefinite potential. Forum Math. 28, 545–571 (2016)

Papageorgiou, N.S., Rădulescu, V.D.: Nonlinear nonhomogeneous Robin problems with superlinear reaction term. Adv. Nonlinear Stud. 16, 737–764 (2016)

Papageorgiou, N.S., Rădulescu, V.D.: Multiplicity theorems for nonlinear nonhomogeneous Robin problems. Rev. Mat. Iberoam. 33, 251–289 (2017)

Cherfils, L., Il’yasov, Y.: On the stationary solutions of generalized reaction diffusion equations with p & q $p\&q$ -Laplacian. Commun. Pure Appl. Anal. 4, 9–22 (2005)

Gasiński, L., Papageorgiou, N.S.: Existence and multiplicity of solutions for Neumann p-Laplacian-type equations. Adv. Nonlinear Stud. 8, 843–870 (2008)

Papageorgiou, N.S., Rădulescu, V.D.: Multiple solutions with precise sign for nonlinear parametric Robin problems. J. Differ. Equ. 256, 2449–2479 (2014)

Hu, S., Papageorgiou, N.S.: Handbook of Multivalued Analysis. Volume I: Theory. Kluwer, Dordrecht (1997)

Fukagai, N., Narukawa, K.: On the existence of multiple positive solutions of quasilinear elliptic eigenvalue problems. Ann. Mat. Pura Appl. (4) 186, 539–564 (2007)

Díaz, J.I., Saá, J.E.: Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires. C. R. Acad. Sci. Paris Sér. I Math. 305, 521–524 (1987)

Aubin, J.-P., Ekeland, I.: Applied Nonlinear Analysis. Wiley, New York (1984)

Gasiński, L., Papageorgiou, N.S.: Exercises in Analysis. Part 1. Springer, Cham (2014)