Nonlinear nonhomogeneous Robin problems with dependence on the gradient
Tóm tắt
Từ khóa
Tài liệu tham khảo
Gasiński, L., Papageorgiou, N.S.: Nonlinear Analysis. Chapman & Hall, Boca Raton (2006)
Lieberman, G.M.: Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. 12, 1203–1219 (1988)
Lieberman, G.M.: The natural generalization of the natural conditions of Ladyzhenskaya and Ural’tseva for elliptic equations. Commun. Partial Differ. Equ. 16, 311–361 (1991)
de Figueiredo, D., Girardi, M., Matzeu, M.: Semilinear elliptic equations with dependence on the gradient via mountain-pass techniques. Differ. Integral Equ. 17, 119–126 (2004)
Girardi, M., Matzeu, M.: Positive and negative solutions of a quasi-linear elliptic equation by a mountain pass method and truncature techniques. Nonlinear Anal. 59, 199–210 (2004)
Faraci, F., Motreanu, D., Puglisi, D.: Positive solutions of quasi-linear elliptic equations with dependence on the gradient. Calc. Var. Partial Differ. Equ. 54, 525–538 (2015)
Huy, N.B., Quan, B.T., Khanh, N.H.: Existence and multiplicity results for generalized logistic equations. Nonlinear Anal. 144, 77–92 (2016)
Iturriaga, L., Lorca, S., Sánchez, J.: Existence and multiplicity results for the p-Laplacian with a p-gradient term. Nonlinear Differ. Equ. Appl. 15, 729–743 (2008)
Ruiz, D.: A priori estimates and existence of positive solutions for strongly nonlinear problems. J. Differ. Equ. 199, 96–114 (2004)
Averna, D., Motreanu, D., Tornatore, E.: Existence and asymptotic properties for quasilinear elliptic equations with gradient dependence. Appl. Math. Lett. 61, 102–107 (2016)
Faria, L.F.O., Miyagaki, O.H., Motreanu, D.: Comparison and positive solutions for problems with the ( p , q ) $(p,q)$ -Laplacian and a convection term. Proc. Edinb. Math. Soc. (2) 57, 687–698 (2014)
Tanaka, M.: Existence of a positive solution for quasilinear elliptic equations with nonlinearity including the gradient. Bound. Value Probl. 2013, 173 (2013)
Gasiński, L., Papageorgiou, N.S.: Positive solutions for nonlinear elliptic problems with dependence on the gradient. J. Differ. Equ. 263, 1451–1476 (2017)
Gasiński, L., O’Regan, D., Papageorgiou, N.: Positive solutions for nonlinear nonhomogeneous Robin problems. Z. Anal. Anwend. 34, 435–458 (2015)
Papageorgiou, N.S., Rădulescu, V.D.: Coercive and noncoercive nonlinear Neumann problems with indefinite potential. Forum Math. 28, 545–571 (2016)
Papageorgiou, N.S., Rădulescu, V.D.: Nonlinear nonhomogeneous Robin problems with superlinear reaction term. Adv. Nonlinear Stud. 16, 737–764 (2016)
Papageorgiou, N.S., Rădulescu, V.D.: Multiplicity theorems for nonlinear nonhomogeneous Robin problems. Rev. Mat. Iberoam. 33, 251–289 (2017)
Cherfils, L., Il’yasov, Y.: On the stationary solutions of generalized reaction diffusion equations with p & q $p\&q$ -Laplacian. Commun. Pure Appl. Anal. 4, 9–22 (2005)
Gasiński, L., Papageorgiou, N.S.: Existence and multiplicity of solutions for Neumann p-Laplacian-type equations. Adv. Nonlinear Stud. 8, 843–870 (2008)
Papageorgiou, N.S., Rădulescu, V.D.: Multiple solutions with precise sign for nonlinear parametric Robin problems. J. Differ. Equ. 256, 2449–2479 (2014)
Hu, S., Papageorgiou, N.S.: Handbook of Multivalued Analysis. Volume I: Theory. Kluwer, Dordrecht (1997)
Fukagai, N., Narukawa, K.: On the existence of multiple positive solutions of quasilinear elliptic eigenvalue problems. Ann. Mat. Pura Appl. (4) 186, 539–564 (2007)
Díaz, J.I., Saá, J.E.: Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires. C. R. Acad. Sci. Paris Sér. I Math. 305, 521–524 (1987)
Aubin, J.-P., Ekeland, I.: Applied Nonlinear Analysis. Wiley, New York (1984)
Gasiński, L., Papageorgiou, N.S.: Exercises in Analysis. Part 1. Springer, Cham (2014)
