Steps/day translation of the moderate-to-vigorous physical activity guideline for children and adolescents

Springer Science and Business Media LLC - Tập 10 - Trang 1-11 - 2013
Marc A Adams1, William D Johnson2, Catrine Tudor-Locke3
1Exercise and Wellness Program, School of Nutrition and Health Promotion, Arizona State University, Phoenix, USA
2Biostatistics Core, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, USA
3Walking Behavior Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, USA

Tóm tắt

An evidence-based steps/day translation of U.S. federal guidelines for youth to engage in ≥60 minutes/day of moderate-to-vigorous physical activity (MVPA) would help health researchers, practitioners, and lay professionals charged with increasing youth’s physical activity (PA). The purpose of this study was to determine the number of free-living steps/day (both raw and adjusted to a pedometer scale) that correctly classified children (6–11 years) and adolescents (12–17 years) as meeting the 60-minute MVPA guideline using the 2005–2006 National Health and Nutrition Examination Survey (NHANES) accelerometer data, and to evaluate the 12,000 steps/day recommendation recently adopted by the President’s Challenge Physical Activity and Fitness Awards Program. Analyses were conducted among children (n = 915) and adolescents (n = 1,302) in 2011 and 2012. Receiver Operating Characteristic (ROC) curve plots and classification statistics revealed candidate steps/day cut points that discriminated meeting/not meeting the MVPA threshold by age group, gender and different accelerometer activity cut points. The Evenson and two Freedson age-specific (3 and 4 METs) cut points were used to define minimum MVPA, and optimal steps/day were examined for raw steps and adjusted to a pedometer-scale to facilitate translation to lay populations. For boys and girls (6–11 years) with ≥ 60 minutes/day of MVPA, a range of 11,500–13,500 uncensored steps/day for children was the optimal range that balanced classification errors. For adolescent boys and girls (12–17) with ≥60 minutes/day of MVPA, 11,500–14,000 uncensored steps/day was optimal. Translation to a pedometer-scaling reduced these minimum values by 2,500 step/day to 9,000 steps/day. Area under the curve was ≥84% in all analyses. No single study has definitively identified a precise and unyielding steps/day value for youth. Considering the other evidence to date, we propose a reasonable ‘rule of thumb’ value of ≥ 11,500 accelerometer-determined steps/day for both children and adolescents (and both genders), accepting that more is better. For practical applications, 9,000 steps/day appears to be a more pedometer-friendly value.

Tài liệu tham khảo

U.S. Department of Health and Human Services: Physical Activity Guidelines for Americans. In Physical Activity Guidelines for Americans. 2008, Washington DC: U.S. Department of Health and Human Services. Physical Activity Guidelines Advisory Committee: Physical Activity Guidelines Advisory Committee Report. In Physical Activity Guidelines Advisory Committee Report. 2008, Washington DC: U.S. Department of Health and Human Services. Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M: Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008, 40: 181-188. Freedson PS, Miller K: Objective monitoring of physical activity using motion sensors and heart rate. Res Q Exerc Sport. 2000, 71: S21-S29. Tudor-Locke C, Craig C, Beets M, Belton S, Cardon G, Duncan S, Hatano Y, Lubans D, Olds T, Raustorp A, et al: How many steps/day are enough? for children and adolescents. IJBNPA. 2011, 8: 78. Colley RC, Janssen I, Tremblay MS: Daily step target to measure adherence to physical activity guidelines in children. Med Sci Sports Exerc. 2012, 44: 977-982. 10.1249/MSS.0b013e31823f23b1. Esliger DW, Probert A, Gorber SC, Bryan S, Laviolette M, Tremblay MS: Validity of the actical accelerometer step-count function. Med Sci Sports Exerc. 2007, 39: 1200-1204. 10.1249/mss.0b013e3804ec4e9. Tudor-Locke C, Johnson WD, Katzmarzyk PT: Accelerometer-determined steps per day in US children and youth. Med Sci Sports Exerc. 2010, 42: 2244-2250. 10.1249/MSS.0b013e3181e32d7f. Centers for Disease Control and Prevention (CDC), National Center for Health Statistics (NCHS): National Health and Nutrition Examination Survey Data. 2006, Washington DC: U.S: Department of Health and Human Services, Centers for Disease Control and Prevention, 2008 Welk GJ, Schaben JA, Morrow JR: Reliability of accelerometry-based activity monitors: a generalizability study. Med Sci Sports Exerc. 2004, 36: 1637-1645. Trost SG, McIver KL, Pate RR: Conducting accelerometer-based activity assessments in field-based research. Med SciSports Exerc. 2005, 37: S531-S543. 10.1249/01.mss.0000185657.86065.98. Trost SG, Pate RR, Sallis JF, Freedson PS, Taylor WC, Dowda M, Sirard J: Age and gender differences in objectively measured physical activity in youth. Med Sci Sports Exerc. 2002, 34: 350-355. 10.1097/00005768-200202000-00025. Treuth MS, Schmitz K, Catellier DJ, McMurray RG, Murray DM, Almeida MJ, Going S, Norman JE, Pate R: Defining accelerometer thresholds for activity intensities in adolescent girls. Med Sci Sports Exerc. 2004, 36: 1259-1266. Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG: Calibration of two objective measures of physical activity for children. J Sports Sci. 2008, 26: 1557-1565. 10.1080/02640410802334196. Cain KL, Sallis JF, Conway TL, Van Dyck D, Calhoon L: Using accelerometers in youth physical activity studies: a review of methods. J Phys Act Health. 2013, 10: 437-450. Trost SG, Loprinzi PD, Moore R, Pfeiffer KA: Comparison of accelerometer cut points for predicting activity intensity in youth. Med Sci Sports Exerc. 2011, 43: 1360-1368. 10.1249/MSS.0b013e318206476e. Tudor-Locke C, Ainsworth BE, Thompson RW, Matthews CE: Comparison of pedometer and accelerometer measures of free-living physical activity. Med Sci Sports Exerc. 2002, 34: 2045-2051. 10.1097/00005768-200212000-00027. Arvidsson D, Fitch M, Hudes ML, Tudor-Locke C, Fleming SE: Accelerometer response to physical activity intensity in normal-weight versus overweight African American children. J Phys Act Health. 2011, 8: 682-692. Feito Y, Bassett DR, Thompson DL: Evaluation of activity monitors in controlled and free-living environments. Med Sci Sports Exerc. 2012, 44: 733-741. 10.1249/MSS.0b013e3182351913. Tudor-Locke C, Johnson WD, Katzmarzyk PT: Accelerometer-determined steps per day in US adults. Med Sci Sports Exerc. 2009, 41: 1384-1391. 10.1249/MSS.0b013e318199885c. Matthews CE, Chen KY, Freedson PS, Buchowski MS, Beech BM, Pate RR, Troiano RP: Amount of time spent in sedentary behaviors in the United States, 2003–2004. Am J Epidemiol. 2008, 167: 875-881. 10.1093/aje/kwm390. Altman DG, Bland JM: Diagnostic tests 3: receiver operating characteristic plots. BMJ. 1994, 309: 188-10.1136/bmj.309.6948.188. Metz CE: Basic principles of ROC analysis. Semin Nucl Med. 1978, 8: 283-298. 10.1016/S0001-2998(78)80014-2. Tudor-Locke C, Hatano Y, Pangrazi RP, Kang M: Revisiting “How many steps are enough?”. Med Sci Sports Exerc. 2008, 40: S537-S543. 10.1249/MSS.0b013e31817c7133. Tudor-Locke C, Bassett DR: How many steps/day are enough? Preliminary pedometer indices for public health. Sports Med. 2004, 34: 1-8. 10.2165/00007256-200434010-00001. Le Masurier GC, Lee SM, Tudor-Locke C: Motion sensor accuracy under controlled and free-living conditions. Med Sci Sport and Exerc. 2004, 36: 905-910. Tudor-Locke C, Brashear MM, Johnson WD, Katzmarzyk PT: Accelerometer profiles of physical activity and inactivity in normal weight, overweight, and obese U.S. men and women. IJBNPA. 2010, 7: 60. Sisson SB, Camhi SM, Tudor-Locke C, Johnson WD, Katzmarzyk PT: Characteristics of step-defined physical activity categories in U.S. adults. Am J Health Promot. 2012, 26: 152-159. 10.4278/ajhp.100326-QUAN-95. Adams MA, Caparosa S, Thompson S, Norman GJ: Translating physical activity recommendations for overweight adolescents to steps per day. Am J Prev Med. 2009, 37: 137-140. 10.1016/j.amepre.2009.03.016. Tudor-Locke C, Craig CL, Aoyagi Y, Bell RC, Croteau KA, De Bourdeaudhuij I, Ewald B, Gardner AW, Hatano Y, Lutes LD, et al: How many steps/day are enough? For older adults and special populations. IJBNPA. 2011, 8: 80. Ogden C, Carroll M: Prevalence of obesity among children and adolescents: United States, trends 1963–1965 through 2007–2008. 2010, Atlanta: Centers for Disease Control and Prevention National Center for Health Statistics President’s Council on Physical Fitness and Sports: The President’s Challenge Physical Activity and Fitness Awards Program. President’s Council on Physical Fitness and Sports. 2001, Bloomington, IN: US Department of Health and Human Services Vincent SD, Pangrazi RP: An examination of the activity patterns of elementary school children. Pediatr Exerc Sci. 2002, 14: 432-441. Fung K: Numbers rule your world : the hidden influence of probability and statistics on everything you do. 2010, New York: McGraw-Hill Beets MW, Morgan CF, Banda JA, Bornstein D, Byun W, Mitchell J, Munselle L, Rooney L, Beighle A, Erwin H: Convergent validity of pedometer and accelerometer estimates of moderate-to-vigorous physical activity of youth. J Phys Act Health. 2011, 8 (Suppl 2): S295-S305. Dollman J, Olds TS, Esterman A, Kupke T: Pedometer step guidelines in relation to weight status among 5- to 16-year-old Australians. Pediatr Exerc Sci. 2010, 22: 288-300.