Toward air-stable multilayer phosphorene thin-films and transistors

Scientific Reports - Tập 5 Số 1
Joon‐Seok Kim1, Yingnan Liu2, Weinan Zhu3, Seohee Kim3, Di Wu3, Li Tao3, Ananth Dodabalapur3, Keji Lai3, Deji Akinwande4
1Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78758, USA
2Department of Physics, The University of Texas at Austin, Austin, TX. 78712, USA.
3University of Texas at Austin#TAB#
4Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, USA

Tóm tắt

AbstractFew-layer black phosphorus (BP), also known as phosphorene, is poised to be the most attractive graphene analogue owing to its high mobility approaching that of graphene and its thickness-tunable band gap that can be as large as that of molybdenum disulfide. In essence, phosphorene represents the much sought after high-mobility, large direct band gap two-dimensional layered crystal that is ideal for optoelectronics and flexible devices. However, its instability in air is of paramount concern for practical applications. Here, we demonstrate air-stable BP devices with dielectric and hydrophobic encapsulation. Microscopy, spectroscopy and transport techniques were employed to elucidate the aging mechanism, which can initiate from the BP surface for bare samples, or edges for samples with thin dielectric coating, highlighting the ineffectiveness of conventional scaled dielectrics. Our months-long studies indicate that a double layer capping of Al2O3 and hydrophobic fluoropolymer affords BP devices and transistors with indefinite air-stability for the first time, overcoming a critical material challenge for applied research and development.

Từ khóa


Tài liệu tham khảo

Bridgman, P. W. Two New Modifications of Phosphorus. J. Am. Chem. Soc. 36, 1344–1363, 10.1021/ja02184a002 (1914).

Morita, A. Semiconducting black phosphorus. Appl. Phys. A 39, 227–242, 10.1007/bf00617267 (1986).

Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377, 10.1038/nnano.2014.35 (2014).

Liu, H. et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041, 10.1021/nn501226z (2014).

Liu, H., Du, Y., Deng, Y. & Ye, P. D. Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev., 10.1039/c4cs00257a (2014).

Tran, V., Soklaski, R., Liang, Y. & Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89, 235319 (2014).

Schwierz, F. Graphene Transistors: Status, Prospects and Problems. Proc. IEEE 101, 1567–1584 (2013).

Wong, H.-S. P. & Akinwande, D. Carbon Nanotube and Graphene Device Physics. (Cambridge Univ Press, 2011).

Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712, 10.1038/nnano.2012.193 (2012).

Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275, 10.1038/nchem.1589 (2013).

Engel, M., Steiner, M. & Avouris, P. Black Phosphorus Photodetector for Multispectral, High-Resolution Imaging. Nano lett. 14, 6414–6417, 10.1021/nl502928y (2014).

Buscema, M. et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 14, 3347–3352, 10.1021/nl5008085 (2014).

Andres, C.-G. et al. Isolation and characterization of few-layer black phosphorus. 2D Mater. 1, 025001 (2014).

Island, J. O., Steele, G. A., van der Zant, H. S. & Castellanos-Gomez, A. Environmental instability of few-layer black phosphorus. 2D Mater. 2, 011002, 10.1088/2053-1583/2/1/011002 (2015).

Koenig, S. P., Doganov, R. A., Schmidt, H., Castro Neto, A. H. & Özyilmaz, B. Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 104, 103106, 10.1063/1.4868132 (2014).

Wood, J. D. et al. Effective Passivation of Exfoliated Black Phosphorus Transistors against Ambient Degradation. Nano Lett. 14, 6964–6970, 10.1021/nl5032293 (2014).

Favron, A. et al. Exfoliating black phosphorus down to the monolayer: photo-induced oxidation and electronic confinement effects. arXiv preprint arXiv:1408.0345 (2014).

Silverstein, M. S., Nordblom, G. F., Dittrich, C. W. & Jakabcin, J. J. Stable Red Phosphorus. Ind. Eng. Chem. 40, 301–303, 10.1021/ie50458a024 (1948).

Lee, J. et al. 25 GHz embedded-gate graphene transistors with high-k dielectrics on extremely flexible plastic sheets. ACS Nano 7, 7744–7750, 10.1021/nn403487y (2013).

Chang, H. Y. et al. High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems. ACS Nano 7, 5446–5452, 10.1021/nn401429w (2013).

Ramon, M. et al. 3 GHz Graphene Frequency Doubler on Quartz Operating Beyond the Transit Frequency. IEEE Trans. Nanotechnol. 11, 877–883 10.1109/tnano.2012.2203826 (2012).

Rahimi, S. et al. Toward 300 mm wafer-scalable high-performance polycrystalline chemical vapor deposited graphene transistors. ACS Nano 8, 10471–10479, 10.1021/nn5038493 (2014).

Akinwande, D., Petrone, N. & Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678, 10.1038/ncomms6678 (2014).

Das, S., Demarteau, M. & Roelofs, A. Ambipolar phosphorene field effect transistor. ACS Nano 8, 11730–11738, 10.1021/nn505868h (2014).

Liu, H., Neal, A. T., Si, M., Du, Y. & Ye, P. D. The Effect of Dielectric Capping on Few-Layer Phosphorene Transistors: Tuning the Schottky Barrier Heights. IEEE Electron Device Lett. 35, 795–797, 10.1109/LED.2014.2323951 (2014).

Liu, H., Neal, A. T. & Ye, P. D. Ambipolar phosphorene field-effect transistors with dielectric capping. Device Research Conference (DRC) 4133, 201–202 (2014).

Na, J. et al. Few-layer black phosphorus field-effect transistors with reduced current fluctuation. ACS Nano 8, 11753–11762, 10.1021/nn5052376 (2014).

Luo, X., Rahbarihagh, Y., Hwang, J. & Liu, H. Temporal and Thermal Stability of Al2O3-passivated Phosphorene MOSFETs. IEEE Electron Device Lett. 35, 1314–1316 (2014).

Wong, E. H., Rajoo, R., Koh, S. W. & Lim, T. B. The Mechanics and Impact of Hygroscopic Swelling of Polymeric Materials in Electronic Packaging. J. Electron Packaging 124, 122–126, 10.1115/1.1461367 (2002).

Ziletti, A., Carvalho, A., Campbell, D. K., Coker, D. F. & Neto, A. C. Oxygen Defects in Phosphorene. Phys. Rev. Lett. 114, 046801, 10.1103/PhysRevLett.114.046801 (2014).

Rudolph, W. W. Raman-and infrared-spectroscopic investigations of dilute aqueous phosphoric acid solutions. Dalton Trans. 39, 9642–9653 (2010).

Venkateswaran, C. in Proc. Indian. Acad. Sci. A. 25–30 (Indian Academy of Sciences, 1935).

Carbonnière, P. & Pouchan, C. Vibrational spectra for P4O6 and P4O10 systems: Theoretical study from DFT quartic potential and mixed perturbation-variation method. Chem. Phys. Lett. 462, 169–172, 10.1016/j.cplett.2008.07.056 (2008).

Hanwick, T. J. & Hoffmann, P. O. Raman Spectra of Several Compounds Containing Phosphorus. J. Chem. Phys. 19, 708, 10.1063/1.1748337 (1951).

Fee, D. C., Gard, D. R. & Yang, C.-H. in Kirk-Othmer Encyclopedia of Chemical Technology (John Wiley & Sons, Inc., 2000).

Kim, S. et al. Realization of a high mobility dual-gated graphene field-effect transistor with Al[sub 2]O[sub 3] dielectric. Appl. Phys. Lett. 94, 062107, 10.1063/1.3077021 (2009).

Lam, K.-T., Dong, Z. & Guo, J. Performance Limits Projection of Black Phosphorous Field-Effect Transistors. IEEE Electron Device Lett. 35, 963–965, 10.1109/led.2014.2333368 (2014).

Lai, K., Kundhikanjana, W., Kelly, M. A. & Shen, Z.-X. Nanoscale microwave microscopy using shielded cantilever probes. Appl. Nanosci. 1, 13–18, 10.1007/s13204-011-0002-7 (2011).

Yang, Y. et al. Batch-fabricated cantilever probes with electrical shielding for nanoscale dielectric and conductivity imaging. J. Micromech. Microeng. 22, 115040 (2012).

Liu, Y. et al. Mesoscale imperfections in MoS2 atomic layers grown by a vapor transport technique. Nano Lett. 14, 4682–4686, 10.1021/nl501782e (2014).

Lai, K., Kundhikanjana, W., Kelly, M. & Shen, Z. X. Modeling and characterization of a cantilever-based near-field scanning microwave impedance microscope. Rev. Sci. Instrum. 79, 063703, 10.1063/1.2949109 (2008).

Duclaux, L. Review of the doping of carbon nanotubes (multiwalled and single-walled). Carbon 40, 1751–1764, 10.1016/s0008-6223(02)00043-x (2002).

Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

Tao, L. et al. Synthesis of high quality monolayer graphene at reduced temperature on hydrogen-enriched evaporated copper (111) films. ACS Nano 6, 2319–2325, 10.1021/nn205068n (2012).

Javey, A. et al. Carbon nanotube field-effect transistors with integrated ohmic contacts and high- kappa gate dielectrics. Nano Lett. 4, 447–450 (2004).

Ha, T.-J., Lee, J., Akinwande, D. & Dodabalapur, A. The Restorative Effect of Fluoropolymer Coating on Electrical Characteristics of Graphene Field-Effect Transistors. IEEE Electron Device Lett. 34, 559–561, 10.1109/led.2013.2246537 (2013).

Ha, T. J. et al. Transformation of the electrical characteristics of graphene field-effect transistors with fluoropolymer. ACS Appl. Mater. Interfaces 5, 16–20, 10.1021/am3025323 (2013).

Yang, M. K., French, R. H. & Tokarsky, E. W. Optical properties of Teflon® AF amorphous fluoropolymers. J Micro Nanolithogr MEMS MOEMS 7, 033010-033010-033019, 10.1117/1.2965541 (2008).

Han, S. J. et al. High-frequency graphene voltage amplifier. Nano Lett. 11, 3690–3693, 10.1021/nl2016637 (2011).

Lowry, J. H., Mendlowitz, J. S. & Subramanian, N. S. Optical characteristics of Teflon AF fluoroplastic materials. Opt. Eng. 31, 1982–1985, 10.1117/12.59910 (1992).