Toward air-stable multilayer phosphorene thin-films and transistors
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bridgman, P. W. Two New Modifications of Phosphorus. J. Am. Chem. Soc. 36, 1344–1363, 10.1021/ja02184a002 (1914).
Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377, 10.1038/nnano.2014.35 (2014).
Liu, H. et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041, 10.1021/nn501226z (2014).
Liu, H., Du, Y., Deng, Y. & Ye, P. D. Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev., 10.1039/c4cs00257a (2014).
Tran, V., Soklaski, R., Liang, Y. & Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89, 235319 (2014).
Schwierz, F. Graphene Transistors: Status, Prospects and Problems. Proc. IEEE 101, 1567–1584 (2013).
Wong, H.-S. P. & Akinwande, D. Carbon Nanotube and Graphene Device Physics. (Cambridge Univ Press, 2011).
Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712, 10.1038/nnano.2012.193 (2012).
Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275, 10.1038/nchem.1589 (2013).
Engel, M., Steiner, M. & Avouris, P. Black Phosphorus Photodetector for Multispectral, High-Resolution Imaging. Nano lett. 14, 6414–6417, 10.1021/nl502928y (2014).
Buscema, M. et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 14, 3347–3352, 10.1021/nl5008085 (2014).
Andres, C.-G. et al. Isolation and characterization of few-layer black phosphorus. 2D Mater. 1, 025001 (2014).
Island, J. O., Steele, G. A., van der Zant, H. S. & Castellanos-Gomez, A. Environmental instability of few-layer black phosphorus. 2D Mater. 2, 011002, 10.1088/2053-1583/2/1/011002 (2015).
Koenig, S. P., Doganov, R. A., Schmidt, H., Castro Neto, A. H. & Özyilmaz, B. Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 104, 103106, 10.1063/1.4868132 (2014).
Wood, J. D. et al. Effective Passivation of Exfoliated Black Phosphorus Transistors against Ambient Degradation. Nano Lett. 14, 6964–6970, 10.1021/nl5032293 (2014).
Favron, A. et al. Exfoliating black phosphorus down to the monolayer: photo-induced oxidation and electronic confinement effects. arXiv preprint arXiv:1408.0345 (2014).
Silverstein, M. S., Nordblom, G. F., Dittrich, C. W. & Jakabcin, J. J. Stable Red Phosphorus. Ind. Eng. Chem. 40, 301–303, 10.1021/ie50458a024 (1948).
Lee, J. et al. 25 GHz embedded-gate graphene transistors with high-k dielectrics on extremely flexible plastic sheets. ACS Nano 7, 7744–7750, 10.1021/nn403487y (2013).
Chang, H. Y. et al. High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems. ACS Nano 7, 5446–5452, 10.1021/nn401429w (2013).
Ramon, M. et al. 3 GHz Graphene Frequency Doubler on Quartz Operating Beyond the Transit Frequency. IEEE Trans. Nanotechnol. 11, 877–883 10.1109/tnano.2012.2203826 (2012).
Rahimi, S. et al. Toward 300 mm wafer-scalable high-performance polycrystalline chemical vapor deposited graphene transistors. ACS Nano 8, 10471–10479, 10.1021/nn5038493 (2014).
Akinwande, D., Petrone, N. & Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678, 10.1038/ncomms6678 (2014).
Das, S., Demarteau, M. & Roelofs, A. Ambipolar phosphorene field effect transistor. ACS Nano 8, 11730–11738, 10.1021/nn505868h (2014).
Liu, H., Neal, A. T., Si, M., Du, Y. & Ye, P. D. The Effect of Dielectric Capping on Few-Layer Phosphorene Transistors: Tuning the Schottky Barrier Heights. IEEE Electron Device Lett. 35, 795–797, 10.1109/LED.2014.2323951 (2014).
Liu, H., Neal, A. T. & Ye, P. D. Ambipolar phosphorene field-effect transistors with dielectric capping. Device Research Conference (DRC) 4133, 201–202 (2014).
Na, J. et al. Few-layer black phosphorus field-effect transistors with reduced current fluctuation. ACS Nano 8, 11753–11762, 10.1021/nn5052376 (2014).
Luo, X., Rahbarihagh, Y., Hwang, J. & Liu, H. Temporal and Thermal Stability of Al2O3-passivated Phosphorene MOSFETs. IEEE Electron Device Lett. 35, 1314–1316 (2014).
Wong, E. H., Rajoo, R., Koh, S. W. & Lim, T. B. The Mechanics and Impact of Hygroscopic Swelling of Polymeric Materials in Electronic Packaging. J. Electron Packaging 124, 122–126, 10.1115/1.1461367 (2002).
Ziletti, A., Carvalho, A., Campbell, D. K., Coker, D. F. & Neto, A. C. Oxygen Defects in Phosphorene. Phys. Rev. Lett. 114, 046801, 10.1103/PhysRevLett.114.046801 (2014).
Rudolph, W. W. Raman-and infrared-spectroscopic investigations of dilute aqueous phosphoric acid solutions. Dalton Trans. 39, 9642–9653 (2010).
Carbonnière, P. & Pouchan, C. Vibrational spectra for P4O6 and P4O10 systems: Theoretical study from DFT quartic potential and mixed perturbation-variation method. Chem. Phys. Lett. 462, 169–172, 10.1016/j.cplett.2008.07.056 (2008).
Hanwick, T. J. & Hoffmann, P. O. Raman Spectra of Several Compounds Containing Phosphorus. J. Chem. Phys. 19, 708, 10.1063/1.1748337 (1951).
Fee, D. C., Gard, D. R. & Yang, C.-H. in Kirk-Othmer Encyclopedia of Chemical Technology (John Wiley & Sons, Inc., 2000).
Kim, S. et al. Realization of a high mobility dual-gated graphene field-effect transistor with Al[sub 2]O[sub 3] dielectric. Appl. Phys. Lett. 94, 062107, 10.1063/1.3077021 (2009).
Lam, K.-T., Dong, Z. & Guo, J. Performance Limits Projection of Black Phosphorous Field-Effect Transistors. IEEE Electron Device Lett. 35, 963–965, 10.1109/led.2014.2333368 (2014).
Lai, K., Kundhikanjana, W., Kelly, M. A. & Shen, Z.-X. Nanoscale microwave microscopy using shielded cantilever probes. Appl. Nanosci. 1, 13–18, 10.1007/s13204-011-0002-7 (2011).
Yang, Y. et al. Batch-fabricated cantilever probes with electrical shielding for nanoscale dielectric and conductivity imaging. J. Micromech. Microeng. 22, 115040 (2012).
Liu, Y. et al. Mesoscale imperfections in MoS2 atomic layers grown by a vapor transport technique. Nano Lett. 14, 4682–4686, 10.1021/nl501782e (2014).
Lai, K., Kundhikanjana, W., Kelly, M. & Shen, Z. X. Modeling and characterization of a cantilever-based near-field scanning microwave impedance microscope. Rev. Sci. Instrum. 79, 063703, 10.1063/1.2949109 (2008).
Duclaux, L. Review of the doping of carbon nanotubes (multiwalled and single-walled). Carbon 40, 1751–1764, 10.1016/s0008-6223(02)00043-x (2002).
Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).
Tao, L. et al. Synthesis of high quality monolayer graphene at reduced temperature on hydrogen-enriched evaporated copper (111) films. ACS Nano 6, 2319–2325, 10.1021/nn205068n (2012).
Javey, A. et al. Carbon nanotube field-effect transistors with integrated ohmic contacts and high- kappa gate dielectrics. Nano Lett. 4, 447–450 (2004).
Ha, T.-J., Lee, J., Akinwande, D. & Dodabalapur, A. The Restorative Effect of Fluoropolymer Coating on Electrical Characteristics of Graphene Field-Effect Transistors. IEEE Electron Device Lett. 34, 559–561, 10.1109/led.2013.2246537 (2013).
Ha, T. J. et al. Transformation of the electrical characteristics of graphene field-effect transistors with fluoropolymer. ACS Appl. Mater. Interfaces 5, 16–20, 10.1021/am3025323 (2013).
Yang, M. K., French, R. H. & Tokarsky, E. W. Optical properties of Teflon® AF amorphous fluoropolymers. J Micro Nanolithogr MEMS MOEMS 7, 033010-033010-033019, 10.1117/1.2965541 (2008).
Han, S. J. et al. High-frequency graphene voltage amplifier. Nano Lett. 11, 3690–3693, 10.1021/nl2016637 (2011).