Reversal of learning deficits in a Tsc2+/− mouse model of tuberous sclerosis

Nature Medicine - Tập 14 Số 8 - Trang 843-848 - 2008
Dan Ehninger1, Sangyeul Han2, Carrie Shilyansky1, Yu Zhou1, Weidong Li1, David J. Kwiatkowski3, Vijaya Ramesh2, Alcino J. Silva1
1Departments of Neurobiology, Psychiatry and Biobehavioral Sciences, Psychology and the Brain Research Institute, University of California, Los Angeles, Los Angeles, USA
2Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Richard B. Simches Research Center, Boston, USA
3Division of Translational Medicine, Genetics Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

European Chromosome 16 Tuberous Sclerosis Consortium. Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 75, 1305–1315 (1993).

van Slegtenhorst, M. et al. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 277, 805–808 (1997).

Joinson, C. et al. Learning disability and epilepsy in an epidemiological sample of individuals with tuberous sclerosis complex. Psychol. Med. 33, 335–344 (2003).

de Vries, P.J. & Prather, P.A. The tuberous sclerosis complex. N. Engl. J. Med. 356, 92, author reply 93–94 (2007).

de Vries, P.J. & Howe, C.J. The tuberous sclerosis complex proteins—a GRIPP on cognition and neurodevelopment. Trends Mol. Med. 13, 319–326 (2007).

Harrison, J.E., O'Callaghan, F.J., Hancock, E., Osborne, J.P. & Bolton, P.F. Cognitive deficits in normally intelligent patients with tuberous sclerosis. Am. J. Med. Genet. 88, 642–646 (1999).

Ridler, K. et al. Neuroanatomical correlates of memory deficits in tuberous sclerosis complex. Cereb. Cortex 17, 261–271 (2007).

Onda, H., Lueck, A., Marks, P.W., Warren, H.B. & Kwiatkowski, D.J. Tsc2+/− mice develop tumors in multiple sites that express gelsolin and are influenced by genetic background. J. Clin. Invest. 104, 687–695 (1999).

Waltereit, R. et al. Enhanced episodic-like memory and kindling epilepsy in a rat model of tuberous sclerosis. J. Neurochem. 96, 407–413 (2006).

von der Brelie, C., Waltereit, R., Zhang, L., Beck, H. & Kirschstein, T. Impaired synaptic plasticity in a rat model of tuberous sclerosis. Eur. J. Neurosci. 23, 686–692 (2006).

Goorden, S.M., van Woerden, G.M., van der Weerd, L., Cheadle, J.P. & Elgersma, Y. Cognitive deficits in Tsc1+/− mice in the absence of cerebral lesions and seizures. Ann. Neurol. 62, 648–655 (2007).

Murthy, V. et al. Developmental expression of the tuberous sclerosis proteins tuberin and hamartin. Acta Neuropathol. 101, 202–210 (2001).

Floresco, S.B., Seamans, J.K. & Phillips, A.G. Selective roles for hippocampal, prefrontal cortical and ventral striatal circuits in radial-arm maze tasks with or without a delay. J. Neurosci. 17, 1880–1890 (1997).

Olton, D., Becker, J. & Handelmann, G. Hippocampus, space and memory. Behav. Brain Sci. 2, 313–365 (1979).

Frankland, P.W., Cestari, V., Filipkowski, R.K., McDonald, R.J. & Silva, A.J. The dorsal hippocampus is essential for context discrimination but not for contextual conditioning. Behav. Neurosci. 112, 863–874 (1998).

Sancak, O. et al. Mutational analysis of the TSC1 and TSC2 genes in a diagnostic setting: genotype-phenotype correlations and comparison of diagnostic DNA techniques in tuberous sclerosis complex. Eur. J. Hum. Genet. 13, 731–741 (2005).

Kwiatkowski, D.J. & Manning, B.D. Tuberous sclerosis: a GAP at the crossroads of multiple signaling pathways. Hum. Mol. Genet. 14, R251–R258 (2005).

Tang, S.J. et al. A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus. Proc. Natl. Acad. Sci. USA 99, 467–472 (2002).

Kwiatkowski, D.J. et al. A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas and up-regulation of p70S6 kinase activity in Tsc1 null cells. Hum. Mol. Genet. 11, 525–534 (2002).

Dragatsis, I. & Zeitlin, S. CaMKIα-Cre transgene expression and recombination patterns in the mouse brain. Genesis 26, 133–135 (2000).

Kwon, C.H., Zhu, X., Zhang, J. & Baker, S.J. mTor is required for hypertrophy of Pten-deficient neuronal soma in vivo. Proc. Natl. Acad. Sci. USA 100, 12923–12928 (2003).

Lewis, J.C., Thomas, H.V., Murphy, K.C. & Sampson, J.R. Genotype and psychological phenotype in tuberous sclerosis. J. Med. Genet. 41, 203–207 (2004).

O'Callaghan, F.J. et al. The relation of infantile spasms, tubers and intelligence in tuberous sclerosis complex. Arch. Dis. Child. 89, 530–533 (2004).

Raznahan, A. et al. Biological markers of intellectual disability in tuberous sclerosis. Psychol. Med. 37, 1293–1304 (2007).

Jaworski, J. & Sheng, M. The growing role of mTOR in neuronal development and plasticity. Mol. Neurobiol. 34, 205–219 (2006).

Tavazoie, S.F., Alvarez, V.A., Ridenour, D.A., Kwiatkowski, D.J. & Sabatini, B.L. Regulation of neuronal morphology and function by the tumor suppressors Tsc1 and Tsc2. Nat. Neurosci. 8, 1727–1734 (2005).

Banko, J.L. et al. The translation repressor 4E–BP2 is critical for eIF4F complex formation, synaptic plasticity, and memory in the hippocampus. J. Neurosci. 25, 9581–9590 (2005).

Dash, P.K., Orsi, S.A. & Moore, A.N. Spatial memory formation and memory-enhancing effect of glucose involves activation of the tuberous sclerosis complex–Mammalian target of rapamycin pathway. J. Neurosci. 26, 8048–8056 (2006).

Vanderklish, P.W. & Edelman, G.M. Differential translation and fragile X syndrome. Genes Brain Behav. 4, 360–384 (2005).

Bear, M.F., Dolen, G., Osterweil, E. & Nagarajan, N. Fragile X: translation in action. Neuropsychopharmacology 33, 84–87 (2008).