Intrinsic Charge Transport in Stanene: Roles of Bucklings and Electron–Phonon Couplings

Advanced Electronic Materials - Tập 3 Số 11 - 2017
Y. Nakamura1,2, Tianqi Zhao2, Jinyang Xi3, Wen Shi2, Dong Wang2, Zhigang Shuai4,5,2
1Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
2MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
3Materials Genome Institute, Shanghai University, Shanghai, 200444 P. R. China
4Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, 351005 P. R. China
5Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Science, Beijing, 100190 P. R. China

Tóm tắt

AbstractThe intrinsic charge transport of stanene is investigated by using density functional theory and density functional perturbation theory coupled with Boltzmann transport equations at the first‐principles level. The Wannier interpolation scheme is applied to calculate the charge carrier scatterings with all branches of phonons considering dispersion for the whole range of the first Brillouin zone. The intrinsic electron and hole mobilities are calculated to be (2–3) × 103 cm2 V−1 s−1 at 300 K. It is found that the intervalley scatterings from the out‐of‐plane and the transverse acoustic phonon modes dominate the carrier transport process. By contrast, the mobilities obtained by the conventional deformation potential approach are found to be as large as (2–3) × 106 cm2 V−1 s−1 at 300 K, in which the longitudinal acoustic phonon scattering in the long wavelength limit is assumed to be the dominant scattering mechanism. The inadequacy of the deformation potential approximation in stanene is attributed to the buckling in its honeycomb structure, which originates from the sp2–sp3 orbital hybridization and breaks the planar symmetry. This paper further proposes a strategy to enhance carrier mobilities by suppressing the out‐of‐plane vibrations through clamping by a substrate.

Từ khóa


Tài liệu tham khảo

10.1126/science.1102896

10.1038/nmat1849

10.1038/nature04233

10.1126/science.1158180

10.1016/j.pmatsci.2015.02.002

10.1103/PhysRevLett.108.155501

10.1002/adma.201400909

10.1002/smll.201402041

10.1103/PhysRevLett.111.136804

10.1088/0953-8984/25/39/395305

10.1038/nmat4384

10.1103/PhysRevLett.95.226801

10.1103/RevModPhys.83.1057

10.1103/RevModPhys.82.3045

10.1103/PhysRevB.75.041401

10.1103/PhysRevLett.112.226801

10.1038/srep20225

10.1126/science.1187485

10.1016/j.commatsci.2016.02.029

10.7566/JPSJ.84.121003

10.1021/ja907528a

10.1021/nn102472s

10.1103/PhysRev.80.72

10.1039/c2nr30585b

10.1063/1.4887538

10.1103/PhysRevB.81.121412

10.1103/PhysRevB.77.115449

10.1103/PhysRevB.85.165440

Shao Z. G., 2013, J. Appl. Phys., 114, 11

10.1039/C4RA01802H

10.1021/jz4005587

10.1021/ja4109787

10.1038/ncomms5475

10.1021/nl502865s

10.1038/srep19968

10.1103/PhysRevB.93.035414

10.1103/PhysRevB.87.115418

10.1109/SISPAD.2016.7605219

10.1103/PhysRevB.93.155413

10.1063/1.4901063

10.1103/RevModPhys.73.515

10.1103/RevModPhys.84.1419

10.1088/0953-8984/21/39/395502

10.1016/j.cpc.2014.05.003

10.1016/j.cpc.2010.08.027

10.1016/j.cpc.2016.07.028

10.1103/PhysRevLett.102.236804

10.1103/PhysRevB.84.195430

10.1021/jp3084716

10.1103/PhysRevB.85.115317

10.1088/1367-2630/16/10/105009

10.1103/PhysRevB.92.075405

10.1103/PhysRevB.91.235419

10.1063/1.4960526

10.1103/PhysRevLett.100.076801

10.1103/PhysRevB.80.155453

J.Ribeiro‐Soares R. M.Almeida L. G.Cançado M. S.Dresselhaus A.Jorio 2014 91 205421.

10.1103/PhysRevB.76.045430

10.1103/PhysRevB.94.245420

10.1080/21663831.2016.1174163

10.1021/jp407666m

10.1103/PhysRevLett.17.1133

10.1103/PhysRevB.65.035109

10.1103/PhysRevB.76.165108

10.1103/PhysRevLett.77.3865