Collision induced dissociation: A statistical theory

Journal of Chemical Physics - Tập 58 Số 9 - Trang 3942-3952 - 1973
Charles Rebick1, R. D. Levine1
1Department of Physical Chemistry, The Hebrew University, Jerusalem, Israel

Tóm tắt

A statistical theory of collision induced dissociation using the three body angular momentum introduced by Delves and Smith is presented. A distinction is made between direct dissociation (no two body intermediates) and indirect processes, due to the formation of quasibound diatoms (of either the chaperon or the energy transfer type). The post-threshold energy dependence in the statistical theory is of the type A(E−E0)n/Etr where E is the total energy and Etr the translational energy. (n ≈ 2 or 1.5 for direct and indirect processes.) The threshold energy, Eo, can be determined by a suitably linearized plot without a prior determination of n. Following a series of diagnostic calculations for the reaction He+H2+(ν)→ He+H++H, the experimental results are simulated via the introduction of a nonstatistical (i.e., selective) bias by representing the dependence of A on the initial vibrational energy in the form A ∝ exp(−λ fν) where fv is the fraction of enegy in the vibration.

Từ khóa


Tài liệu tham khảo

1964, J. Chem. Phys., 41, 2174, 10.1063/1.1726222

1971, Chem. Phys. Lett., 10, 245, 10.1016/0009-2614(71)80279-8

1971, Chem. Phys. Lett., 9, 80, 10.1016/0009-2614(71)80189-6

1971, Physica (Utr.), 54, 223, 10.1016/0031-8914(71)90020-6

1972, J. Chem. Phys., 57, 4742, 10.1063/1.1678145

1968, J. Chem. Phys., 49, 3411, 10.1063/1.1670615

1970, J. Chem. Phys., 53, 2107, 10.1063/1.1674294

1972, Chem. Phys. Lett., 12, 615, 10.1016/0009-2614(72)80021-6

1970, Chem. Phys. Lett., 5, 340, 10.1016/0009-2614(70)85160-0

1971, J. Chem. Phys., 54, 5231, 10.1063/1.1674819

1971, Chem. Phys. Lett., 11, 109, 10.1016/0009-2614(71)80544-4

1971, J. Chem. Phys., 55, 4628, 10.1063/1.1676799

1970, Chem. Phys. Lett., 7, 480, 10.1016/0009-2614(70)80152-X

1972, Physica (Utr.), 62, 369, 10.1016/0031-8914(72)90266-2

1968, J. Chem. Phys., 49, 5046, 10.1063/1.1669997

1972, J. Chem. Phys., 57, 434, 10.1063/1.1677983

1972, J. Chem. Phys., 57, 5427, 10.1063/1.1678242

1960, Phys. Rev., 120, 1058, 10.1103/PhysRev.120.1058

1968, Chem. Phys. Lett., 2, 366, 10.1016/0009-2614(68)80026-0

1969, J. Chem. Phys., 50, 5163, 10.1063/1.1671032

1972, J. Chem. Phys., 56, 926, 10.1063/1.1677250

1972, Chem. Phys. Lett., 16, 460, 10.1016/0009-2614(72)80400-7

1958, J. Chem. Phys., 29, 410, 10.1063/1.1744495

1963, Proc. R. Soc. A, 274, 427

1965, Teor. Eksp. Khim., 1, 135

1965, Theor. Exp. Chem., 1, 83

1968, Discuss. Faraday Soc., 44, 14

1971, J. Chem. Phys., 54, 1206, 10.1063/1.1674956

1958, Nucl. Phys., 9, 391, 10.1016/0029-5582(58)90372-9

1960, Nucl. Phys., 20, 275, 10.1016/0029-5582(60)90174-7

1972, J. Chem. Phys., 56, 1481, 10.1063/1.1677393

1966, J. Chem. Phys., 44, 1619, 10.1063/1.1726900

1967, Adv. Chem. Phys., 13, 85, 10.1002/9780470140154.ch5

1969, J. Phys. Chem., 73, 1722, 10.1021/j100726a016

1972, J. Phys. Soc. Jap., 32, 1348, 10.1143/JPSJ.32.1348

1971, J. Chem. Phys., 54, 5221, 10.1063/1.1674818

1971, Chem. Phys. Lett., 10, 2, 10.1016/0009-2614(71)80141-0

1959, J. Chem. Phys., 31, 1531, 10.1063/1.1730649

1959, J. Chem. Phys., 31, 1545, 10.1063/1.1730650

1960, J. Chem. Phys., 33, 942

1972, J. Chem. Phys., 56, 2455, 10.1063/1.1677554

1966, Phys. Rev. Lett., 16, 385, 10.1103/PhysRevLett.16.385

1967, J. Chem. Phys., 46, 4905, 10.1063/1.1840655

1970, Chem. Phys. Lett., 4, 643, 10.1016/0009-2614(70)80107-5

1970, Chem. Phys. Lett., 7, 268, 10.1016/0009-2614(70)80305-0

1970, Acc. Chem. Res., 3, 48, 10.1021/ar50026a002

1970, Acc. Chem. Res., 3, 273, 10.1021/ar50032a004

1972, J. Chem. Phys., 57, 4063, 10.1063/1.1678889